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0.0 PROGRAM SUMMARY

The primary objective of the Advanced Deep Space Communication

Systems Study has been to define those areas of technology where

research effort can best be expended in order to meet deep space com-

munication needs in the period 1970 to 1980. Accomplishment of the

primary program objective has required the establishment, first, of

fundamental system limitations to the extent that they are understood

as well as the practical restrictions imposed by current technological

limitations. Based on this information, potential system performance

has been estimated as a function of frequency to serve as a guide to the

selection of optimum frequencies and to provide an indication of the

improvement required at each frequency. Finally, the required per-

formance improvement has been apportioned among the various

system parameters in accordance with estimates of present and pro-

jected technological progress in order to identify the parameters and

corresponding technologies for which the greatest gain in system

performance can be expected for research effort invested.

This report discusses first, in Section i, the communication

system requirements for deep-space missions with reference to trans-

mission range, data rate, and angular coverage. The high data rates

to which this study is directed are appropriate to photographic and

other mapping missions.

Basic limitations to system performance are reviewed in

Section 2. These include minimum signal requirements, noise sources

and their spectral characteristics, and atmospheric attenuation and

distortion effects. Practical limitations on performance due to the

present and projected state of technology are discussed later with

reference to radio frequency and optical components in Section 4 and 5,

respectively.

Based on the various performance limitations expected commu-

nication link performance is then analyzed in Section 3 as a function of

frequency to determine suitable frequencies and system configurations.

Several candidate systems are described.

0-i
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As mentioned above, Sections 4 and 5 are concerned with a

review of the present state of the art in radio frequency and optical

technology as well as with a discussion of potential developments and

promising areas for research.

Plasma propagation as related to communications during

atmospheric entry is considered in Section 6. Communications

"blackout" is discussed as a function of elapsed time and altitude

bands for several frequencies of interest.

Section 7 summarizes the many areas in which research effort

could usefully be applied to improve space communications capabilities.

Areas of particular pertinence or promise are called out and further

discussed.

0. 1 SYSTEM PERFORMANCE LIMITATIONS

Signal coding techniques are available which permit a close

approach to the theoretical data rate limit. Similarly, receiver

performance in terms of noise and detection efficiency is approaching

reasonable or ultimate limits within the spectral region of interest

except at millimeter and submillimeter wavelengths. Again, efficient

narrow-band radiative sources capable of suitable CW power levels are

available in both rsdio and optical regions of the spectrum, except at sub-

millimeter, near-infrared and visible wavelengths. (Two years ago the

entire optical region would have been excluded.) The significant restric-

tions on system performance are therefore due to external noise sources

and atmospheric effects which identify certain favorable regions of the

spectrum, and to engineering and technological limitations on aperture

gain which determine the achievable levels of performance within these

favorable regions.

Galactic noise and atmospheric background tend to define a low-

noise region between 1 and i0 GHz under fair weather conditions,

which is narrowed to about 1 to 5 GHz during rain. Above 50 GHz

atmospheric absorption becomes prohibitive out to a wavelength of

about 12 microns except for a partial window at 94 GHz; and cloud

0-2



cover extends the blackout through the optical region. Thus for a

ground-based receiver good performance is limited to the 1 to I0 GHz

region and optical wavelengths; and with rain and clouds the useful

frequency band is further restricted to 1 to 5 GHz.

Distortions of the incident wavefront due to atmospheric

turbulences set limits on the effective dimensions, and hence gain, of

single-element receiver apertures. In the microwave region, gains

are limited to the order of 80 db, and in the optical region to the

order of I00 db. Achievable fabrication tolerances set gain limits

in a similar manner on both receiver and transmitter apertures.

A given ratio of rms deviation in effective pathlength to aperture

diameter results in a gain limit constant with frequency. However,
in practice smaller tolerance ratios are achievable for smaller dia-

meters so that as aperture dimensions decrease with increasing
frequency, an improvement in gain can result. Gain is finally limited

at the high-frequency end of the spectrum by the need for a beamwidth

comparable with expected pointing errors.

0. Z CANDIDATE SYSTEMS

The basic limitations on system performance define two spectral

regions of interest: one in the microwave region in the vicinity of 3 GHz,

and the other in the optical region. However, since poor weather con-

ditions can effectively black out the entire optical region, the require-

ment for an essentially continuous optical link would necessitate an

increase in the number of ground stations at diverse locations to assure

fair-weather conditions for at least one, or an earth-orbiting satellite

relay station.

For a ground-based optical receiver atmospheric distortions of the

wavefront restrict single-aperture diameters in an approximate inverse

relationship to frequency. Thus multi-element apertures are required

to provide equivalent performance at higher frequencies, and receiver

simplicity tends to favor the longer optical wavelengths. The unique

availability of an efficient transmitting source at 10. 6 microns provides

0-3



an overriding argument which directs interest to the 10-micron region

for an optical communication link employing coherent reception.

For noncoherent reception, receiver sensitivities as limited by

thermal or quantum noise are sufficiently below coherent levels to

require excessively large aperture areas. Although these "photon

buckets" need not be of optical quality, practical limitations on detector

size would require fabrication tolerances comparable to those required

for microwave apertures with the additional requirement of a specular
surface. Therefore, unless an efficient laser becomes available in the

visible region, noncoherent reception is not recommended for wide-
band communication links.

For a satellite receiver atmospheric restrictions do not apply.

However, the large aperture dimensions appropriate to microwave

frequencies, with no appreciable compensating advantages in terms
of reduced atmospheric losses and background noise, eliminate a

microwave spacecraft-to-satellite link from further consideration.
At the same time the millimeter-and submillimeter-wave region offers

little advantage over the optical region with respect to the state of the

art of radiative power sources and detectors, and the larger apertures

required put this region at a comparative disadvantage. The optical

region is therefore favored. Gain limitations due to pointing accuracies

and the present availability of an efficient transmitting source at i0. 6

microns once more direct attention to the 10-micron region.

Three basic system configurations are therefore considered

worthy of further investigation. These are:

• a direct microwave, spacecraft-to-earth communication

link in the region of 1 to 5 GHz;
• a direct optical link at I0.6 microns employing additional

ground stations to assure the necessary weather diversity;

0-4
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• a satellite relay configuration (one or at most two required)

utilizing a i0.6 micron optical link from spacecraft to

satellite with a noncritical microwave link for the short

range from satellite to earth.

Further analyses are required to determine the relative costs

appropriate to these configurations.

0. 3 RECOMMENDATIONS FOR RESEARCH PROGRAMS

The present study has narrowed the choice for a deep space com-

munication link to three candidate systems. However_ a quantitative

evaluation of these three configurations is not within the scope of this

program. Considerable further study and detailing of system compo-

nents are required before a valid comparison can be made. In

Section 7.6 several study programs are recommended_ having as

their goal the final selection of configuration and a conceptual design

of the communication system. Some preliminary research and

development of the critical components in each system is necessary

to provide realistic cost estimates_ and is desirable to maintain

technological progress through the selection period.

The primary program recommended (Section 7.6. i) is essentially

an extension of the present study. A comparison of system parameter

values as influenced by fundamental and practical restrictions on

performance has reduced the number of promising configurations to

three. A more detailed analysis of each system and its critical

components is now required to evaluate the candidates quantitatively.

The evaluation process can be greatly facilitated by the use of a

computer program which can at each stage of the study determine the

optimum division of burden among the system parameters. Thus_

simultaneously_ attention will be directed to the significant areas for

investigation_ and a running account of estimated costs_ including

necessary R and D efforts_ will be kept.

In order to provide more valid and reliable data for the systems

evaluation study_ programs should be initiated concurrently to consider

0-5



the conceptual design and methods of reducing costs of critical system

components. The critical component studies are summarized in

Sections 7.6.2 to 7.6.4 with reference to the three system configura-

tions and comprise:

• a study of optimum methods and techniques for the imple-

mentation of large ground antenna arrays.

• an evaluation in terms of performance and burden of space-

craft antenna configurations, including simple antennas,

extensible antennas, and multi-element phased arrays.

• a study of coherent optical receiver techniques including

heterodyne frequency and phase control and electro-optical

pointing and tracking.

• an investigation of basic laser mechanisms and frequency

control of the carbon dioxide laser.

• a study of acquisition_ tracking_ and pointing requirements on

board the spacecraft including the optimum relationship

between transmitter beamwidth and pointing accuracy.

• a comprehensive investigation of atmospheric distortion

effects on coherent reception with reference to site and

weather.

Concurrent with these studies which are concerned with the

definition of an optimal system design_ it might be advantageous to

pursue the development of high-gain extensible spacecraft antennas.

Such an antenna might give a 10-20 db increase in performance pending

development of a large microwave ground receiver array or an optical

communication link.
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i. 0 SYSTEM REQUIREMENTS

Deep space missions for the forseeable future will be restricted

to exploration of the sun, the planets and their natural satellites, and

1,2
to the space environment within the dimensions of the solar system

For the time period (1970 to 1980) and the data transmission rates

toward which this study is directed (106 to 108 bits per second), mis-

sions of interest will be restricted to orbiter or lander explorations

of the nearer planets. These missions define the basic system require-

ments with reference to transmission range, data rate, and angular

coverage. The communication path of primary interest is that from

the space probe to Earth both because it represents the essential

direction of data flow and because vehicle restrictions on weight and

available prime power cause this link to be the most critical.

1. l TRANSMISSION RANGE

Communication range for a given space mission depends on the

launch date and the injection energy expended as well as the objective.

Figures l-l through 1-43 show communication distance vs. launch

date with C3, the injection energy of the escape hyperbola, as a

parameter for Mercury, Venus, Mars, and Jupiter missions. Of

most immediate interest are missions to the two nearest planets, Mars

and Venus. However mission to Mercury and Jupiter are also of

prime interest. The terms Type I and Type II refer to the two possible

elliptical interplanetary transfer orbits. For Type I, the heliocentric

central transfer angle is less than 180 ° and for Type II it is greater

than 180 °. Class I or II refers, to planetary encounter at the first or

second intersection of the spacecraft trajectory with the planetary

orbit.

I. Z DATA RATE

The high data rates to which this study is addressed are appro-

priate to requirements for photographic, infrared, or other radiation

mapping of the planetary surface. Program goals are i06 bits per

i-i



Figure I-2. Venus 1970:

launch date.

Earth-Venus communication distance versus
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second for a microwave communication link and 108 bits per second in

the optical region. The higher rate is adequate for standard quality

television where a 6-bit word is used to provide a 64-1evel gray scale

with 4 MHz video sampled twice per cycle. The one megabit rate can

provide real time transmission of pictures of comparable quality at a

rate of about one every three seconds, or at a faster rate at lower

optical or gray-scale resolutions. It has been estimated 4 that photo-

graphic reconnaissance of the surface of Mars in sufficient detail to
13

permit landing site selection would comprise of the order of 10 bits

of information; this would constitute over 100 days of continuous trans-

mission at the 106 bit rate, or just over a day at the 108 bit rate. Thus

these rates represent a reasonable bracketing of transmission require-

ments for planetary reconnaissance missions. With reference to the

approximate 10-bit-per-second rate for Mariner IV, performance

improvements of 50 to 70 db are required to meet the program goals.

Figure i-55 is a projection of communications requirements from

present capability for a nominal range of 386 million Era. This figure

tends to confirm the goals as logical extensions of present capability.

i. 3 ANGULAR COVERAGE

The angular coverage required for spaceborne antennas is

dependent on mission requirements and vehicle design. For relatively

short communication links between a lander and its orbiting bus, or

between a satellite station and Earth, low gain antennas may be appro-

priate to minimize pointing requirements. For the critical space

vehicle to Earth (or satellite) link, high-gain antennas are needed, but

the required angular coverage is limited to the ecliptic plane. At

microwave frequencies where the beamwidth associated with practical

spaceborne-antenna gains considerably exceeds the angle subtended

by the Earth, the spacecraft may be oriented so that pointing require-

ments are restricted to a single degree of freedom. The angular

coverage required of the antenna in the ecliptic then will depend on the

duration of the mission and other mission requirements which may

restrict spacecraft orientation with respect to Earth. At optical
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frequencies where beamwidths narrower than the Earth's subtense are

to be expected (for example, a 10 microradian beam at a distance of

l AU subtends a circle of less than 1000 miles diameter), fine tracking

of the transmitter beam becomes a much more critical factor.

For a ground-based station in a direct spacecraft-to-Earth link,

angular coverage must include, in general, the ancient zodiac, a strip

±8-1/Z degrees about the ecliptic within which lie all of the major

planets except Pluto• Since the earth is inclined at an angle of

Z3-I/2 degrees to the ecliptic, the total declination angle to be covered

is ±3Z degrees, and ground stations must be located within 50 degrees

of the equator. The normal to the antenna aperture typically is normal

to the axis of the earth. For M stations evenly spaced in longitude

around the earth covering a declination band ±D and a longitudinal arc

ZTr/M, the maximum beam excursion from the normal is 4, where

cos _ = cos D cos (r/M)

Values of _ are given in Table l-i for the maximum declination angle,

D = 3Z degrees and for various M.

Number of

Stations, M

Maximum excur sion

angle,

(degrees)

2 90

3 64. 9

4 53.2

5 46. 7

6 4Z. 7

CO 3Z

Table I-i. Maximum angular excursion of beam from

normal for M ground stations.

I

I

I

I

I

I
I
I

I

I
I

I

1

1
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From the table it is evident that three stations represents the practical

minimum and there is little incremental improvement for additional

stations above four. Four stations may be desirable, however, to

limit atmospheric losses and system noise temperature at minimum

elevation angles and to minimize losses associated with the scanning

of large antenna arrays. For the same reasons the stations should be

located as near the equator as possible.
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2. 0 BASIC SYSTEM LIMITATIONS

The electromagnetic transmission of energy is governed by the
one-way transmission equation:

S
GT GR PT ki

Z

(4Tr)2 R 2 L

whe r e

S

G T

G R

PT

X

R

= signal power received

= transmitter antenna gain

= receiver antenna gain

- transmitter power

= signal wavelength

= transmission pathlength

and

L -- transmission losses (greater than unity)

The signal power required at the receiver, however, is determined

by the required data accuracy and by the noise present, due both to

external sources and to the receiver itself. Thus noise presents a

fundamental limitation on system performance and can be accounted

for by rewriting the transmission equation in terms of the signal-to-

noise ratio,

S/N =
GT GR PT kz

(4Tr)ZRZLhf 11 + (ehf/kT - I)-lj B
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where

and

f =

k =

T =

B __

Planck' s constant

c/k = signal frequency

Boltzmann's constant

effective absolute temperature of the receiver

receiver bandwidth

Restrictions on the minimum usable values for the signal-to-noise

ratio are discussed in Section 2.1.

The expression hf I1 + (e hf/kT - 1) -1] B represents the ideal

noise limit 1 where T is taken as the temperature faced by the ideal

receiver input. In the microwave region where kT >> hf, this

expression converges to the familiar quantity kTB, and in the optical

region where generally kT<<hf, to hfB. For non-ideal systems

detection efficiency and the additional noise contribution due both to

external and internal noise sources can be included by taking T as

the equivalent system noise input temperature of the receiver. In the

optical region where the temperature term does not apply, detector

efficiency can be separately accounted for by taking the ratio of

effective to ideal input noise to be inversely proportional to detector

quantum efficiency. Sources of external noise are discussed in

Sections 2.2 and 2. 3.

The signal losses, L, included in the transmission equation

comprise small losses due to inefficiencies of transmitting and

receiving antennas, feeds, etc., and transmission losses due to the

fundamental propagation characteristics of the earth's atmosphere.

The signal losses due to atmospheric attenuation are discussed as a

function of frequency in Section 2.4. Losses due to plasma effects

during atmospheric entry by a high velocity vehicle are discussed

separately in Section 6.
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The effective gains, G T and G R, of transmitter and receiver

antennas, respectively, may be limited by atmospheric propagation

effects as well as by practical limitations on achievable fabrication

tolerances. Wavefront distortions due to atmospheric inhomogeneities

across the aperture will have an effect similar to that caused by

deviations in the antenna surface. Thus atmospheric distortion can

set a basic limit to the effective gain for a single aperture. Distortion

characteristics of the atmosphere as they are presently known are

discussed in Section 2. 5.

2.1 SIGNAL-TO-NOISE AND BANDWIDTH LIMITATIONS

The minimum allowable signal-to-noise ratio and signal bandwidth

requirement for a given data rate _ in bits per second are determined

by the information coding method employed. Based on Shannon's work,

the limiting data rate in terms of signal-to-noise ratio and bandwidth is

given by the expression: 2

< B log 2 (i + S/N)

or

< B log 2 (l + R /B)o

where (S/N) B is defined as the information-rate parameter, go"

The maximum data rate can be approached with negligible error by a

proper choice of coding technique. 3,4, 5 A simple and fairly efficient

technique, for example, is coherent biphase coding. The characteristics

of this code in terms of signal-to-noise and bandwidth-to-data-rate

ratios, and its relation to the Shannon limit are shown in Figure 2-1.

For small error probabilities the bandwidth required is comparable

with the data rate, an increase in signal serving to reduce the error

probability without appreciable effect on the bandwidth requirement.

Tolerable values of error probability range from 10 -5 to l0 -2

depending on type of data. 6 Thus the practical limit for the product

of signal-to-noise ratio and bandwidth, even with a simple code, need
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Figure 2-1. Efficiency of biphase coding.

not exceed the ideal limit by more than an order of magnitude to

provide acceptable performance. The expression _o = (S/N) B = 10

will therefore be taken to represent a practical relationship between

signal and bandwidth and the limiting noise level. (The actual relation-

ship for a specific system design will depend on the particular coding

scheme adopted as well as on error-rate requirements.)

2.2 RADIO FREQUENCY NOISE SOURCES

Relative contributions to microwave system noise from various

sources may be conveniently compared in terms of antenna noise

temperature. If the noise power incident on the antenna is constant

over the bandwidth of interest, the antenna temperature is

P
T -
a kB
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where

T a =

P =

g Z

k =

antenna temperature (OK)

incident noise power (watts) in the plane of polarization
of the antenna

bandwidth (Hz)

Boltzmann's constant (1.38 x 10 -23 joules/°K)

Noise from extended sources, large relative to the antenna beam-

width, is commonly specified in terms of brightness or brightness

temperature. Brightness is defined as irradiance in watts/meter 2 per

Hz of bandwidth incident on an antenna having an angular beamwidth of

one steradian. The brightness temperature of an extended source at a

given frequency is defined as the temperature of a blackbody surface

which would produce the same brightness at that frequency. The brightness

temperature is related to the brightness by the Rayleigh-Jean's approxi-

naation to Planck's law,

where

T b

P

k

pk 2
Tb 2k

= brightness temperature (oK)

= brightness (watts/meter 2 steradian) per Hz

= wavelength (meters)

The antenna temperature due to an extended source is then

_r[30 a 2A 2_pA
a a

T = T b -a 8k kG

in terms of brightness where @a is the angular beamwidth of the

antenna and is small, A a is the effective antenna area, and G, the

gain.
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Noise from sources having small angular subtense (Os) relative

to the antenna beamwidth is customarily specified in terms of irradiance

(watts/meter2)/Hz of bandwidth. Since the irradiance, H, is just

H = p (_/4) Osz, the source temperature
in accordance with the

Rayleigh-Jean's approximation to Planck's law is

z zH
T -

s Trk @ 2
S

The antenna temperature is given by

in terms of irradiance,

Z ___

a

or by

H A a 2H k2

2k 2
_ke

a

Ta \@a/ Ts

in terms of source temperature.

2.2.1 Galactic Background

The sun is a small star in one arm of our spiral planar galaxy.

Antennas see a higher temperature source when pointed along this

galactic plane than otherwise. Eight of the most reliable measurements
• 7

of galactic noise spatial distributions have been summarlzed and give

maximum and minimum backgrounds as shown in Figure 2-2.8 The

curves of maximum galactic background versus frequency represent

the brightness temperature at the galactic center while the minimum

curve is for one of the coldest regions of the radio sky. It is evident

that the galactic background can be neglected for frequencies above

Z C_hz.
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Figure 2-2. Galactic noise temperature.

2.2.2 Radio Stars

Superimposed on the general galactic background radiation are

numerous discrete sources, generally less than 1 degree in extent.

Since the majority of these sources cannot be identified with visible

objects they are known as radio stars. The strongest of these sources

tend to occur near the plane of the galaxy. Figure 2-38 locates the ten

strongest radio stars in equatorial coordinates and gives their noise

temperatures at 378 Mhz. The spectra of the four brightest radio stars

are shown in Figure 2-4. 9

2.2. 3 Hydrogen Line Emission by Interstellar Gas Clouds

Radio astronomers have detected an essentially monochromatic

spectrum line due to the radiation of atomic hydrogen at a wavelength

of 21 cm (1.42 Ghz). The hydrogen line emission is a maximum along

the Milky Way with a distribution over the sky roughly similar to the

general galactic background. It has a maximum brightness temperature

of 100 ° and maximum brightness of 6 x l0 -20 watts/m 2 steradian per

Hz l0 This is well in excess of the general galactic background at that

frequency. However, since this is limited to a single wavelength, it is

unimportant as a _ource of interference.
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2. 2.4 Solar Radiation

The equivalent noise temperature of the quiet sun varies from

7 x 105°IC at 0. 3 GHz to 6000o14 at 30 GHz. The observed values of sun

II
temperature between 0. 25 and 35 GHz follow closely the relationship

Ts._ 675 [i + l__l___ log 6 (f - 0. i) ]290 f 2. 3 sin 2:: i02. 3

where T is the apparent sun temperature and f is the frequency in
S

gigahertz. This equation is plotted in Figure 2-5.

From earth, the sun subtends a solid angle of about 7 x 10 -5

steradians. The temperature given by the above equation will be

observed by an antenna having a beamwidth equal to or less than this.

For antennas having beamwidth greater than this, the apparent

temperature is decreased by the ratio of the sun angular subtense to

w

l-

m

|

,oS

10 4

I I I I I I
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10 3 I i J i i i i

I I0

f.Ghz

! I

Figltre 2-5. Sun noise temperature

versus frequency.
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the antenna beamwidth (solid angle). Measured solar irradiance levels
17

outside the earth's atmosphere are indicated in Figure 2-9.

2.2. 5 Planetary Radiation

For low noise, high gain, receiving systems, planetary radiation

can become significant (see for example Table 4-11). The planets pro-

duce radio frequency radiation by thermal emission. At radio wave-
2

lengths, thermal radiation intensity varies as I/k (Rayleigh-Jean's

approximation to blackbody radiation at long wavelengths).

Figure 2-612 shows the theoretical maximum thermal radiation

intensity (irradiance) outside the earth's atmosphere based on planetary

temperature estimates. These are essentially in agreement with

infrared measurements except in the case of Jupiter, Venus, and

Saturn. Actual measured radiation from these planets is included in

Figure 2-6.

In addition to this thermal radiation, strong bursts of lower

frequency impulsive radiation have been observed from Jupiter and

Venus. This non-thermal radiation has not been observed at fre-

quencies greater than 43 MHz.

2. 2. 6 Lunar Radiation

In the microwave region, the moon acts as a blackbody radiator

at a temperature which lags by about 45 ° in lunar phase that deter-

mined by infrared measurements. While lunar surface temperatures

as determined by infrared measurements vary from 120°K to 400°K
13

as the lunar phase changes, brightness temperatures at 35 GHz

vary from 145°K to 220°K. At frequencies less than 1.4 GHz the

radiation temperature is approximately constant at 250°K. 8

2. 2. 7 Terrestrial Background

Thermal radiation from the ionosphere is very small for micro-

wave frequencies. The effect of ionospheric radiation can be approxi-

mated by assuming that each 0. l db of absorption is equivalent to 7°K

antenna noise temperature. Since the ionospheric absorption is less
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14
than 0. i db for frequencies greater than 0. 3 GHz, this noise source

can be neglected in comparison with the galactic background.

In the troposphere, thermal radiation is primarily due to oxygen

and water vapor. The resultant tropospheric contribution to the noise

te1_perature of a narrow beam antenna whose radiation pattern has no

side or back lobes has been calculated for various zenith angles and is
iI

shown in Figure 2-7. The calculated curves are in essential agree-

ment with experimental measurements.
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Thermal radiation from the earth itself can be approximated by

blackbody radiation at 300°K in the microwave and millimeter wave

region of the spectrum. This is an important source since approxi-

mately 2_ steradians of back lobe angular coverage is illuminated by

it. Thus low back lobes are an important consideration in low noise

earth based antennas.

2. 3 OPTICAL NOISE SOURCES

For an optical receiver with a very narrow field of view such as

is appropriate to a deep space communication link, background noise

will often be negligible. With a 10-microradian field of view, for

example, the effective irradiance from a daytime sky is of the order

of the irradiance from the brightest stars. The effective irradiance of

the moon and the nearer planets is reduced to a similar level

2-12



inasmuch as only a portion of their surfaces will be within the field of

view. The maximm_ background irradiance therefore will be of the
-11 Z

order of 10 watts/cm micron at a wavelength of 0. 5 micron. At

_ bit rate of 10 8 bits/second this corresponds to less than one photon

per bit for a receiver having an aperture area of one square meter

and an optical bandwidth of one Angstrom. Thus, except for a direct

view of the sun, optical receivers will generally be limited by signal

statistics or detector noise. This will be particularly true of coherent

receivers where optical noise bandwidths correspond more nearly to

signal bandwidths.

However, for receivers having relatively wide fields of view or

very large apertures, such as may be appropriate to non-coherent

systenns, noise contributions from the external sources discussed

below nnay be significant.

Z. 3. 1 Stellar Radiation

The spectral irradiance of the stars has been calculated assuming
15

blackbody radiation. Figure 2-8 depicts spectral irradiance reach-

ing the top of the earth's atmosphere from the stars which exhibit the

largest irradiance in the visible region. Variable stars such as

Betelguex, Mira, and R. Hydrae are described by their maximum

irradiance.

2. 3.2 Solar Radiation

The spectral distribution of solar radiation resembles that of a

blackbody at 6000°K. Over 98 percent of the solar radiation is con-

16
rained in the wavelength region 0. 3 to 4. 0 microns. Figure Z-9

shows the spectral distribution of solar energy just outside the

atmosphere at the earth's mean solar distance (I AU).

2. 3. 3 Lunar and Planetary Background Radiation

The spectral irradiance of the moon and the brighter planets due

to reflected solar radiation and self emission is depicted in
6

Figures 2-10 and Z-ll. The spectral self emission has been
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Figure 2-8. Spectral irradiance of brightest stars outside

the terrestrial atmosphere.

calculated on the assumption that the planets radiate as grey bodies.

Irradiance from the planets Neptune and Pluto reaching earth is

insignificant.

Earth radiation to space consists of reflected solar energy and

self-emitted energy. For reflected energy the mean albedo over the

solar spectrum is approximately 0.35. In addition to this the earth

radiates by self-emission as a blackbody at a temperature of g20°K

to 320°K, depending on latitude. When the sum of the solar reflected

and blackbody radiation from the earth's surface is combined with the

effect of selective atmospheric absorption, the spectral radiant
17

emittance of Figure 2-12 results.
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Figure 2-I0. Full moon spectral irradiance outside the

terrestrial atmosphere.

g. 3. 4 Terrestrial Atmospheric Background

The radiance of the sky is the result of two mechanisms:

molecular scattering of incident radiation and emission by atmospheric

constituents as a result of absorption of incident radiation. Atmos-

pheric emission is significant only at wavelengths longer than Z_.

Scattering of solar radiation is the overwhelming contribution to day-

time sky radiance in the visible and near visible ragion. Spectral

radiance versus wavelength of the clear daytime sky is plotted in

Figure 2-1318 for a 45 degree zenith angle with the sun near zenith.

Radiances of sunlit clouds are typically an order of magnitude greater.
19

Measurements of the spectrum of diffuse night radiance give a

spectral radiance in the visible and near infrared of the order of

10 -I0 to 10 -9 watts/cn_ Z nlicron steradian. Except for the narrow

intense Na and H atomic lines, relatively light sky emissions appear

between 0. I and i. 0 micron. Beginning at 1 micron_ intense OH

g-17
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Figure 2-ii. Calculated planetary spectral irradiance

outside the terrestrial atmosphere.

molecular bands appear as "air glow" with radiances between 10 -9

and 10 -8 watts/cm 2 micron steradian. Above Z microns thermal

emission from the dense lower atmosphere corresponding roughly

to Z60°K blackbody radiation obscures the air glow.

2.4 ATMOSPHERIC ATTENUATION

2.4. I Attenuation at Radio Frequencies

Ionospheric attenuation becomes negligible above about

14
300 megahertz so that for microwave transmission through the

atmosphere attenuation results principally from absorption due to

oxygen, water vapor and water in the troposphere. Theoretical attenua-

tion spectra for these components are shown in Figure 2-14 together
Z0

with experimental values for several conditions of rain and fog. The

expected attenuation for a one-way passage through a standard summer

Z-18
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T S is the surface temperature and T A is the

effective radiating air temperature.

atmosphere at several zenith angles is given in Figure 2-15. ll These

curves have been derived from calculations made for a two-way radar

transit and are in good agreement with experimental data. 21 They

indic ate that attenuation increases rapidly above 10 gigaHertz.
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Data arenot generally available for the wavelength region

between 1 millimeter and Z0 microns but it is believed to be blocked

for the most part by water vapor and other molecular absorption bands.

2.4.2 Attenuation at Optical Frequencies

There are several transmission windows in the infrared as

indicated in Figures 2-16 and Z-17 ZZ but roughly half of the spectrum

is still blocked by molecular absorption bands. The density of

absorption bands decreases in the near infrared and visible regions

as shown in Figure 2-1822 The curves, given for several values of

zenith angle, are for very clear atmospheric conditions.
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It is in_portant to note that the atmospheric absorption bands

con_prise a large nu_rlber of sharp absorption lines not resolved on

the scale of the curves shown. For the essentially monochromatic

r_diation generated by lasers, windows may exist within these bands

or conversely, relatively isolated absorption lines may exist in

apparent windows. Thus high-resolution spectral measurements are

necessary in the vicinity of laser lines of interest.

High-resolution solar spectra, 23, 24, Z5,26,27,28 which have

been taken for many years, represent the best source of information

on atmospheric absorption lines. While these measurements have

generally been made at high altitudes in order to minin_ize atmospheric

effects and do not provide absolute data on transmission through a

standard atmosphere, the measured lines at which attenuation occurs
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are still strong and serve to identify those wavelengths which must be

avoided in the design of a ground-based laser communication link. A

detailed study of the absorption spectrum in the vicinity of a number

of laser lines has been made 29'30'31 and indicates, for example, that

the output of a ruby laser operated at room temperature lies between

water vapor absorption lines situated about a half an angstrom unit

above and below the 6943 A operating point. While similar windows

exist above and below this wavelength, the allowable operating

temperature range for the laser rod to maintain the radiation within

any one of these windows is of the order of 15°C. This emphasizes

the importance of detailed spectral measurements of atmospheric

absorption about each specific wavelength of interest.

Provided the laser wavelength does not coincide with an

absorption line, attenuation in the atmosphere will be due to

scattering effects. The attenuation at short wavelengths is due to

molecular (Rayleigh) scattering of the radiation or, which the scattering

2-24



coefficient varies as I/k 4, and together with absorption by ozone in the

upper atmosphere accounts for the sharp cutoff of transmission in the

ultraviolet as shown in Figure 2-18. Scattering from aerosol particles

and droplets in the first few kilometers of the lower atmosphere also

plays a major part in attenuation of electromagnetic radiation in the

visible and near-infrared regions. 32, 33 For this type of (Mie) scatter-

izlg (where particle dimensions are comparable with wavelength) the

wavelength dependence of the scattering coefficient is a function of

patti, [e size and type, but for typical aerosol distributions encountered,
34

experimental measurements suggest that the dependence is about I/k.

While little q_antitative information is available on laser beam

penetration of fog, clouds, or rain, the great increase in scattering of

optical radiation associated with such weather conditions indicates that

attenuation will be prohibitory. Some idea of the effects of fog and rain

is given in Figure Z-19 based on measurement 35 of signal losses over

a fixed laser link of 2. 6 kin. Note that the loss for rain ranges over

5 to 15 db versus 20 to greater than 60 db for fog. Attenuation in
36

clouds can be expected to be similar to that for fog.

0 l ' 2.0
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A "'
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Figure 2-19. Fog-rain attenuation.

2. 6 km path length.
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2. 5 ATMOSPHERIC DISTORTION

The subject of electromagnetic propagation through turbulent

refractive irregularities has received considerable attention as a

result of investigations into the phenomena of beyond-the-horizon

scatter propagation in the RF region and, of longer standing, in con-

nection with astronomical seeing limitations in the optical region.

More recently, the subject has become of concern in the development

of deep space communication links where the turbulent characteristics

of the atmosphere are beginning to impose serious limitations on

tracking and communication capabilities for the large apertures and

high frequencies considered. However, because of the complex

nature of atmospheric perturbations and of scattering theory and

because of the difficulties involved in carrying out meaningful experi-

ments, quantitative predictions of phase and amplitude fluctuations

over the propagating wavefront cannot yet be made reliably with

reference to the pertinent meteorological conditions.

Z.5. I Distortion At Radio Frequencies

For RF propagation through the troposphere variations in the

index of refraction are principally due to water vapor irregularities.

These irregularities can be attributed to the turbulent movements of

the random atmospheric wind velocity fields. In the stratosphere,

which contains a negligible amount of water vapor as compared to the

troposphere, variations in the refractive index are less and can be

assumed to be primarily a function of thermodynamic variations in

pressure and temperature. Models have been developed, describing

the atmospheric structure in statistical terms, as a basis for the

application of scattering theories 37-41. Some correlation has been

achieved between these theories and a number of experimental

measurements 4Z-47 taken over various path lengths under different

and incompletely defined meteorological conditions. A more definitive

experiment is required to provide good correlation between meteoro-

logical conditions and measured effects on propagation. Such a program
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48
is presently underway, conducted by the Stanford Research Institute,

and is designed specifically to determine propagation limitations on

multiple aperture antennas for deep space communications.

In the absence of definitive data, an indication of expected

deviations of an incoming wavefront over an antenna aperture can be

gained from the phase n_easurements obtained in the NBS Maui experi-
45

ment. Here phase deviations in transmission over a 15 mile path,

which dropped from i0,000 feet to i00 feet (corresponding to a zenith

angle of about 83 °) were irleasured by two receivers for several base-

line lengths up to 4800 feet. The measurements were made at a fre-

quency of 9,414 MHz, but the deviations in terms of path length can be

expected to a first approximation to be independent of frequency.

Since the measurements at the various antenna locations were made

during different recording periods and therefore under different

meteorological conditions, the sample points are not strictly cor-

related over the baseline range. The trend of these samples, however,

is remarkably consistent and is shown in Figure 2-20 where phase

deviations have been converted to linear deviations in the wavefront.

2.5. Z Distortion At Optical Frequencies

Whereas in the RF region of the spectrum, humidity plays a pre-

dolrlinant part in atmospheric propagation phenomena, in the optical

r_gion the index of refraction is determined essentially by the density
49

of the air Wavefront distortions result principally then from local

variations in density due to atmospheric temperature fluctuations.

The problem of phase and amplitude fluctuations in the signal

wavefront is conceptua]ly simpler at optical frequencies where

propagating wavelengths are always very much smaller than the

diffracting atmospheric inhomogeneities. _At the same time, experi-

mental measurements are made somewhat easier by the smaller

correlation distances involved. As a result the theory of optical
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propagation through the atmosphere 50 "J.s well advanced and shows

reasonable correlation with astronominal experience and with recent

51,52
experiments using laser beams.

The effects of these atmospheric fluctuations on laser systems

have been discussed 53' 54 and a major study program 55 has been

undertaken which considers the specific problems associated with

laser space communications. As a part of this study the lateral phase

correlation length has been calculated 56 for typical daytime and
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nighttinle atmospheric conditions as shown in Figure Z-21. The

effective (elemental) aperture of a coherent receiver operating within

the atmosphere is restricted to a diameter comparable with this

correlation length as indicated in Figure 2-22. (A similar argument

holds for an optical transmitter where the effective antenna gain is

constrained by atmospl_e,ric distortions of the transmitted wavefront. )

If larger effective apertl,re areas are to be achieved for coherent

ground-based systems, self-phasing techniques will be required to
provide correlation among a number of elements.

Amplitude fhctualions are also present in the received wave-

l_ront as a result of atmospheric disturbances. Although these do not

represent a fundamental restriction on system performance, physical

apertures considerably greater than the effective aperture limit may
be necessary to average over several an_plitude correlation lengths.

In the visible region, for example, where the effective aperture

dialrleter for coherent detection is only a few centimeters, the

an_plitude correlation length is typically of the order of i0 centimeters

and a 30 centimeter aperture is required to reduce the rms deviations
in received signal power to about i0 percent. 50 However, since the

amplitude correlation length is proportional to kI/2 while the phase

correlation length is proportional to k6/5, the two become comparable

in the far infrared. At the same time the magnitude of the amplitude

fluctuations across the wavefront decreases with increasing wavelength

so that physical apertures need not be appreciably in excess of effective
apertures for good performance at i0. 6 microns.

For noncoherent detection effective aperture area is not restricted

by phase deviations, but, as for coherent detection, apertures large

with respect to amplitude correlation lengths are required to minimize

signal fluctuations due to amplitude scintillations.

_':_Work57 in progress at Hughes Research Laboratories indicates
that the phase coherence length at i0.6 microns may be considerably
greater than that predicted in Figure 2-21. Such aresult would mean that
the restriction on receiw'r diameter imposed by atmospheric turbulence
would be much less severe at I0.6 microns than assumed here.
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Atmospheric turbulence is strongly influenced by characteristics

of the surrounding terrain. Thus careful choice of site can reduce atmos-

pheric effects by a factor of two or three. A similar advantage can be

gained by elevation of the receiver above the turbulent layer that blankets

the ground. The appropriate height 58 is a function of wind velocity and

type of terrain; it is generally greater than I00 feet but may be as low as

20 feet under low-velocity, flat-terrain conditions.
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3.0 SYSTEM PERFORMANCE

I

!
t
I

The potential telecommunication performance for a deep space

communication link (from a space vehicle to earth) is considered in

this section as a function of frequency. Consideration is given to both

the basic and practical limitations which apply.

First, as a measure of telecommunication system performance,

the product of signal quality and quantity is derived from the one-way

transmission equation, and the explicit frequency-dependent terms are

separated from the system parameters. Next, link performance is

investigated as a function of the explicit frequency dependency and as

it is influenced by the implicit restrictive frequency dependencies

imposed on the "constant" parameters of the transmission link equa-

tion. Included are the losses due to atmospheric absorption and the

influence of atmospheric distortion on receiver aperture size. Total

link performance is then given as a product of the various frequency

dependent parameters. The optimum operating frequencies indicated

as a result of this analysis will depend on the relative values taken as

parametric restrictions. Finally, consideration is given to opera-

tional system requirements and their effect on the overall system

implementation. This consideration includes the relative role of earth

receiving stations versus satellite receiving stations.

3. 1 PERFORMANCE CRITERIA

The performance of a telecommunication link may be measured

against many criteria. Chief among these criteria are amount of data,

trustworthiness, and economy in transmission of the data. In this

study, primary emphasis is placed on achieving an improvement in the

amount of data while maintaining its quality. Economy of data trans-

mission remains important but is placed in a secondary role at this

time, for in general, realistic cost evaluations must be related to

specific candidate systems as they develop from basic systems studies

and research. The product of transmitted data quality and quantity (the

information rate parameter) is then taken as a performance criterion,
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the one way transmission equation is rewritten in terms of this product.

Here the signal-to-noise ratio, S/N, represents signal quality; the

bandwidth, B, represents signal quantity:

GT CR PT kZ

: : [1 ](4Tr)ZRZLhf +(e hf/kT _ i)-I

Insertion of the functional frequency dependencies of the transmitter

and receiver antenna gain parameters of this equation (G = 4w A/k 2)

gives:

(S) A'T AR PT M (2)12o = (B) = 2
R hc 2 Lo Lf

where L and Lf represent the fixed and frequency dependent losseso

(greater than unity), respectively, and M 1 collects the functional fre-

quency dependencies,

f
M = (3)

1 + (e hf/kT - 1) -1

Equation 2 separates the explicit functional frequency dependen-

cies from the physical parameters of the transmission link

equation. However, some of these physical parameters are

indirectly dependent on frequency in terms of practical system

considerations. Consider, for example, the frequency depen-

dency placed on a spaceborne transmitting antenna due to

achievable pointing accuracy. Such a limit sets a minimum allowable

beamwidth (or maximum gain), thereby requiring the effective diam-

eter of the transmitting antenna to decrease inversely as frequency

increases. This and other such restrictions must be included when

applying the transmission equation to the process of optimum frequency

selection. The explicit functional frequency dependency given by M is
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discussed below as are the implicit frequency dependencies due to the

various practical limitations imposed on the transmitting antenna area,

AT; the receiving antenna area, AR; the transmitted power, PT; and

losses due to atmospheric transmission represented by El.

3. I. 1 Functional Frequency Dependency, M

Equation 3 compares ultimate system performance for communi-

cation systems operating at different frequencies but with constant

values of antenna area for both transmit and receive, constant power

transmitted, and constant losses in transmission. This equation is

plotted in Figure 3-I and indicates that with the above physical param-

eters fixed, the performance increases linearly with frequency where

quantum noise is dominant and with the square of frequency where

thermal noise is dominant. As indicated in this figure, there is an

ultimate system improvement possible of six orders of magnitude in

going from present operating frequencies in the microwave band to the

visible light spectrum. While the actual achievement of this million-

fold improvement in system performance is inhibited by the practical

parametric restrictions to be discussed, still the frequency-

dependent parameter M does represent an ultimate performance limit,

with respect to fixed physical parameters which could be approached

upon the investment of suitable effort. It sets a goal, the pursuit of

which will require the development of new concepts and techniques.

3. 1.2 Transmitting Antenna Area

The effective area of a spacecraft transmitting antenna may be

limited by one of three practical considerations:

• weight and size limitations imposed by the vehicle,

• antenna fabrication tolerances, and

• transmitting beamwidth demanded by the limitation

on pointing accuracy.

Although there is some interrelation among these factors (for example,

an extensible antenna may be used for increased diameter at the
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expense of dimensional tolerances) one will generally dominate within

a certain frequency range.

In Figure 3-Z transmitting antenna area is plotted against fre-

quency for different values of the three restrictive conditions.

Horizontal lines indicating restrictions on effective diameter could be

due to a variety of constraints such as vehicle dimensions or weight

allocations. Fabrication tolerances set a limit on achievable gain and

hence on effective aperture area. Tolerances are generally

expressed in normalized form as the ratio of the rms dimensional

deviation in effective path length to the diameter, u/D. Since a given

ratio implies a particular gain limit 2, effective antenna area will be

inversely proportional to the square of the frequency for a given u/D

value. Similarly, a given pointing accuracy requires a certain beam-

width and hence represents a gain limit. Thus, the same family of

curves can represent the restriction on transmitting antenna area due

to either fabrication tolerance or pointing accuracy limitations. The

curves, evaluated for an approximate 3 db loss, result in lines of

constant negative slope on the log-log plot of Figure 3-2 and are

labeled in terms of u/D, beamwidth, and effective gain (3 db loss).

With reference then to Figure 3-2, the frequency dependency of

the transmitting antenna area may be determined based on an appro-

priate set of assumptions as to vehicle constraints, practical fabrica-

tion tolerances, and achievable pointing accuracy.

3. 1.3 Receiving Antenna Area

The same type of restrictions apply to the receiving antenna area

as to the transmitting antenna. Thus, the useful area of a single

element may be limited by allowable size, achievable tolerances, or

(for coherent reception) achievable pointing accuracy. For a satellite

receiving station, limiting values may not differ too much from those

for a deep space vehicle. On the other hand, for a ground station, overall

aperture diameter will in general not be restricted by installation

requirements, but a single aperture element will be subject to a limitation

due to atmospheric distortion of the signal wavefront over the aperture.
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As discussed in Section 2.5, little quantitative information is

available on such atmospheric anomalies as wavefront corrugation and

tilt, or unequal illumination of the aperture. However, an indication

of the restriction imposed at radio frequencies on antenna diameter

can be gained based on data available from the NBS experiment 3 at

Maui, Hawaii (1956). The assumption is made that the wavefront

distortions, corresponding to the phase deviations experimentally

measured as a function of baseline (see Figure 2-20), will have an

effect similar to that caused by dimensional deviations of the antenna

surface due to fabrication tolerances. It is further assumed the linear

dimensions of the distortion are to a first approximation independent
4

of frequency . A curve based on the worst data from the Maui experi-

ment is plotted with the other restrictions in Figure 3-2.

In the optical region of the spectrum an atmospheric correlation

length has been defined equal to the maximum effective aperture diam-
5

eter for coherent detection . Thiscorrelationlengthisassumedtovary

as --'k°]5 The aperture area corresponding to a 3 db loss due to signal

decorrelation for typical daytime conditions of atmospheric turbulence

is plotted in Figure 3-2. This restriction applies only to coherent

reception.

3. 1.4 Transmitted Power

Frequency dependent restrictions on transmitter power are

related to the method of power generation. At microwave frequencies

traveling-wave tubes have been found most satisfactory in providing

high powers, and this capability extends to the millimeter wavelengths.

In general, however, maximum power generation capability in TWT

amplifiers is inversely proportional to frequency.

At optical frequencies the principal limitation on power generated

is set by heat dissipation in the laser cavity as a result of low conver-

sion efficiencies. There is no significant systematic dependency on

frequency, performance being related to the different specific laser

mechanisms.
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In either portion of the spectrum an increase in power can

always be achieved by paralleling units although in the optical region

phase-locking of the various elements will be more difficult. Hence

the effective limitation is set by weight, size, and power supply
restrictions.

3.1.5 Atmospheric Losses

Transmission losses occur in the atmosphere due to absorption

of electromagnetic radiation by the constituent gases (especially water

vapor) and, in the optical region, due to aerosol and molecular scatter-

ing. Absorption occurs in bands in the spectrum rather than as a

systematic variation; this spectral absorption is indicated in

Figures 2-14 through 2-18, in Section 2.4. Scattering at low altitudes

from aerosols generally accounts for the predominant loss in the

visible region, where the transmission is roughly proportional to wave-

length as indicated in Figure 2-18.

Rain and fog begin to have a serious effect on transmission in

the millimeter region of the RF spectrum, with the effect due to fog

increasing at optical frequencies as indicated in Figures 2-14 and 2-19.

It is evident that an optical communication link would be effectively

blacked out by cloud cover. Table 3-16 shows the percentage of time

that various sites experience obscuration by clouds and indicates the

seriousness of this problem.

3. i. 6 System Noise

Essentially system noise has no explicit frequency dependency

other than that already included in the parameter M. It depends in

practice, however, on external noise sources and on achievable receiver

noise temperatures inthe RF region and detector quantum and heterodyne

efficiencies in the optical region. Presently achievable receiver perform-

ances in the RF andprojected performance in both the RF and optical region
1

are indicated in the Figure 3- 3. A receiver noise figure was not explicitly

included in the one-way transmission equation, but has the effect of

3-8

I

l

l



o

0
z

o

o

o
o_

4

0
U

0 0 0 0 0 0 0 0 0 0
L_ _ _0 _ C_ _ D'- ,--_ 0

0
U

0

z

M .. M M M _fl M _ M M

o _ _ -_- _n _ co o ,-_ _ . _ .-_
0 .,-_ 0 0_0 0 _0

o0 _ ._o _ _ __o o _o __ _ _o_ o_- _o_

o_-I

°;.-_

0

n_
o

0

o

N
O
N
N

O

O
°_"1

N

2_

N
O

fi

m
N

o

o

o
z

0

u

0

0

.r-I

.el

°_-._

O

o
u

-rl

O

o

z

o
2_

I

3-9



iO-t6 i I I

CRYSTAL MIXERS
__ _ PARAMETRIC AMPLIFIERS -

MASERS

lOS °K I L,, I

10 3 OK _ _

T:I°K _ PROJECTED CAPABILITY

10 9 I0 I0 10 II IO I_ IO Is IO 14 IO 15

jO -I?

(_ i0-111i-

i0-i9

_ IO -2°
n

__ iO-Z_
O
Z

I0 - z2

to-Z3

FREQUENCY, Hz

Figure 3-3. Heterodyne receiver noise performance.

of reducing the value of the parameter M. The noise figure and external

noise (see Section 2) can be accounted for in the RF region by taking

the noise-equivalent rather than actual input temperature to give the

effective value of M. In the optical region M must be reduced by the

quantum efficiency of the detector as well as by the receiver

noise figure when considering the performance to be expected

of a real system. The effective value of M has been taken,

therefore, as 6 db below the value indicated in Figure 3-i, the loss

being equally divided between the detector quantum efficiency and the

receiver noise figure.

3. 1.7 Fixed Losses

In addition to frequency and weather dependent transmission

losses and to detection losses accounted for by the effective value

taken for the parameter M, there are several practical losses which

apply generally to all systems. The limitations on effective trans-

mitting and receiving apertures have been given for conditions to which
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a 3 db decrease in effective gain is expected; thus a 6 db loss must be

allocated to these components. A further 1 db is then taken to cover

miscellaneous transmission losses in the equipment, so that a total

of 7 db is assumed for fixed system losses.

3.2 SAMPLE PERFORMANCE CALCULATION

System performance versus frequency may now be cal-

culated based on the one-way transmission equation and on

various limiting values of the parameters as discussed above.

A calculation of performance at a range of one astronomical

unit is made taking representative parametric restrictions

as tabulated in Table 3-Z. In general, the technological

restrictions represent the state of the art projected to the

1975-80 period. The curves are normalized, however, to

a transmitted power of one watt, the assumption being made that if

the requirement exists, roughly the same transmitter efficiency can

be obtained in any region of the spectrum. The curves are also based

on a single element receiver aperture. Practical restrictions imposed
by the atmosphere define three cases of interest:

• no atmospheric losses (corresponding to a satellite
receiving station),

• atmospheric losses due to clear weather conditions,
and

• atmospheric losses due to poor weather conditions.

The specific parameter values for several frequencies particularly
those at which significant changes occur in the chosen parametric

restrictions are given in Table 3-3. The resultant product of signal
quality (S/N) and signal quantity (B) is also tabulated.

The product (S/N) (B), or information-rate parameter %, is

plotted in Figure 3-4 for the three cases considered with reference

to the atmosphere. The sharp peaks and valleys result from the

discontinuous nature of the parametric restrictions selected, and their

exact positions are dependent on the particular values taken as

representative of practical limits.
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It should also be noted that the curves in the optical region

represent performance limitations on coherent detection. For non-

coherent detection, pointing accuracy and atmospheric distortions do

not impose restrictions on receiver aperture area so that in general

the fall off in performance with frequency in the optical region (for no

atmosphere or for clear weather) will be as the inverse of frequency

rather than the inverse cube. On the other hand, receiver noise levels

may be very much higher. -& comparison is made between coherent

and noncoherent performance at two specific wavelengths as shown in

the figure.

3.2. 1 Satellite Receiver

The curve for a satellite receiving station shows two maxima, in

i013the vicinity of 3 x 10 9 and 3 x Hz, corresponding to wavelengths

of approx_mate]y i0 centimeters and I0 microns, respectively. These

are directly related to the maximum frequencies for which constant

aperture areas were taken for both the transmitter and receiver. The

falloff in performance on the low-frequency side of the microwave peak

results from a direct limitation on aperture dimension while the cutoff

on the high-frequency side of this peak results both from a restriction

on antenna size due to fabrication tolerances (down to dimensions

where optical fabrication techniques apply} and from the higher receiver

noise temperatures appropriate to an uncooled satellite receiver in the

millimeter-wave region of the spectrum. The cutoff on the high-

frequency side of the infrared peak is due to the limitation assumed for

pointing and tracking accuracy of the space vehicle transmitting

aperture.

3.2.2 Ground-based Receiver, Clear Weather

Similar maxima are indicated for a ground-based receiver under

clear weather conditions. The performance at microwave frequencies,

however, is shown as increasing out to about I0 GHz where atmos-

pheric distortions tend to limit aperture size. This assumes the

possibility of a single-element receiving antenna having an effective
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diameter of 100 meters with a fabrication tolerance of about

_/D = Z x l0 -5 or, alternatively, the employment of an equivalent

antenna array. Note that where information rates of the order of
106 bits per second are considered, an array large enough to provide

this effective aperture at low elevation angles will require compensa-
tion for variation not only of the carrier phase but also of the signal

delay across the aperture.

The performance peak in the infrared is lowered and shifted

slightly to longer wavelengths by atmospheric distortion effects, while
transmission in the submillimeter and far infrared region is effectively

cancelled by atmospheric absorption. Smaller subsidiary peaks

appear, however, at the 30 and 90 GHz "windows" in the millimeter

regions.
For comparison the expected performance of two noncoherent

optical systems is included. Because the particular detection

mechanisms for these systems vary, it is not convenient to show a

general functional dependence of performance on frequency.

3. Z.3 Ground-based Receiver, Poor Weather

When the restrictions imposed by clouds and rain are considered

the familiar single performance maximum appears in the microwave

region at about 3 GHz. Undue significance should not be given to the

exact position of the peak as shown, since it is determined more by the

somewhat arbitrary choice of limits taken for transmitter and receiver

antenna dimensions than by the more fundamental restrictions set by

antenna noise temperature and atmospheric transmission.

3.3 SYSTEM CONFIGURATIONS

The curves of Figure 3-4 provide an indication of the relative

performance to be expected of deep-space communication links operat-

ing in the various regions of the frequency spectrum. It is evident that

a major hindrance to the improvement promised at higher frequencies

is presented by the attenuating and distorting characteristics of the

atmosphere.
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Space missions which are likely to require the wide signal band-
widths considered in this study are those involving real-time trans-

mission of data and hence an essentially continuous communications

capability. (Such a requirement can be expected for a flyby mission,

a landing mission, or a mission requiring voice communication. ) At
microwave frequencies continuous coverage can be achieved under all

weather conditions, and a direct spacecraft-to-earth link is appro-

priate. However, at optical frequencies clouds may cut off a ground
site completely. Thus, if an effectively continuous communication

link is to be established between a spacecraft and earth within an

acceptable atmospheric loss, alternative transmission configurations
must be considered for wavelengths shorter than microwave. There
seems little reason for serious consideration of a millimeter-wave

system except possibly for a space vehicle to satellite link if a break-

through in receiver technology should occur. For a ground receiver,

performance at 30 GHz comparable to that at3 GHz would require an

equivalent antenna area with means for the correlation of atmospheric

phase distortions over the aperture, or an order of magnitude increase
in other system parameters. At 94 GHz ground receiver performance

is down by another two orders of magnitude.

Potential microwave and optical system configurations are

discussed briefly below with appropriate specific system parameters
given in Section 3.4.

3. 3. 1 Direct Microwave Link

In the vicinity of 3 GHz atmospheric losses and restrictions on

potential performance are small. At the same time much larger

apertures can be reasonably contemplated for ground-based than for

satellite-borne receivers. Thus a direct spacecraft-to-earth link is

the obvious choice for a microwave system. Suitable components for

such a system have been under progressive development for a consider-

able period of time, and only modest advancement of the state of the

art should be required to permit information rates of the order of

106 bits per second. Note that for the extrapolated antenna gains
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considered, a transmitted power of i0 watts from the space vehicle

would be sufficient to meet this performance. Indeed the penalty paid

for a microwave system is in the dimensions of the transmitting and

receiving antennas required to achieve the desired performance at

moderate transmitted-power levels.

3.3.2 Direct Optical Link

To provide an essentially continuous direct optical link between

a spacecraft and the earth, multiple ground stations would evidently be

necessary (i. e., several times the number needed to provide the

requisite angular coverage}. _he number of additional stations

required will depend on the statistical weather conditions at the speci-

fic sites available. The availability of a sufficient number of good

sites could in principle result in an overall cost saving due to the

smaller installation required for an optical receiver.

Coherent 10-Micron System. For coherent reception the CO 2 laser

wavelength at I0.6 microns lies very near the performance peak in

the infrared and with its high efficiency is the obvious choice for a

coherent optical system. However, it is evident that multi-element

apertures will be required to provide the levels of performance to

which this study is directed. At i0.6 microns the product (S/N) (B)

for each element is more than sufficient to permit phase-locking of

the local oscillator to follow the low-frequency signal-phase distor-

tions due to the atmosphere. The elementary signals can then be

correlated at the heterodyne difference frequency to provide a useful

signal-to-noise ratio at the information bandwidth.

A total effective aperture diameter of about Z meters, compris-

ing approximately 33 elements would be required to equal the perform-

ance of the 3 GHz microwave system considered (I00 meter receiving

antenna diameter). The number of elements could be reduced some-

what by the employment of larger but less efficient elemental aper-

tures. The implementation of such a system would not be trivial,

particularly when a goal of 108 bits per second for an optical system

is sought, and substantial increases in other parameter values must

be considered for high data-rate links.
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Noncoherent 10-Micron System. Noncoherent detection at i0.6 microns

is limited by thermal noise at the detector output, the sensitivity of the

detector in this mode being less by about three orders of magnitude

than in the coherent mode. (Because the limiting noise is independent

of the signal, the actual degradation factor depends on the square root

of the signal-to-noise ratio, which is taken here to be i0.) Inasmuch

as atmospheric phase correlation lengths do not restrict the elemental

aperture area, a single large "photon bucket" may be used. However,

practical limitations on fabrication tolerances and detector dimensions

will set an upper limit on noncoherent aperture diameters.

If a 0-/D ratio comparable with that postulated for the 100-meter

microwave antenna could be achieved for an optical reflector, diam-

eters as large as 50 meters, sufficient to match the performance of the

microwave link, might be feasible. In spite of the reduced complexity,

the much greater aperture area required for noncoherent as opposed

to coherent reception at I0.6 microns makes this system unattractive.

Noncoherent 0. 5-Micron System. The communication link perform-

ance as indicated in Figure 3-4 discourages any present interest in

coherent detection in the visible region of the spectrum for a ground-

based system. However, the situation is somewhat improved for

noncoherent detection. For a system operating at approximately

0. 5 microns a photomultiplier detector can be used to provide essen-

tially noise-free quantum detection. As compared with coherent

detection at i0 microns, detection sensitivity will be down by a factor

of two due to the higher quantum noise limit for noncoherent detection,

another factor of about 2-1/2 to account for the lower quantum effi-

ciency of the photoemissive detector surface, and a further factor

of 20 due to the increase in quantum noise level with frequency. Sky

background illumination will cause an additional degradation depending

on receiver field of view and aperture size. For an optimized system

this might be as low as 3db. As compared with a I0.6 micron coherent

receiver, then, the total loss in sensitivity indicated is less than that

for a noncoherent receiver at 10 microns.
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However, a system at 0.5 micron suffers from one major dis-

advantage: presently known lasers in this region of the spectrum have

efficiencies of the order of 0. 1 percent. Thus, barring discovery of a

new laser material, overall system performance would be over an

order of magnitude below the low level anticipated for a noncoherent
carbon dioxide (I0.6 micron) system. While direct solar-pumping of

the laser might give some improvement in overall efficiency, the

improvement would not be sufficient to overcome the basic deficiency
of the laser.

3.3.3 Satellite Optical Link

Another method of taking advantage of the increased aperture

gains at optical wavelengths, while avoiding blackout due to poor

weather conditions, is the use of a satellite relay station. The

spacecraft-to-satellite link would take advantage of the higher aperture

gains available at optical wavelengths while a short relay microwave

link to earth would obviate atmospheric losses. Except for a few

limited geometries a single synchronous satellite could provide a

continuous link with the spacecraft so that a single satellite receiver

and ground station might suffice for the full system. The cost of a

satellite receiver must therefore be weighed against the cost (including

maintenance) of three or four large-aperture ground-based microwave

receivers, or of a greater number of relatively small-aperture,

ground-based optical receivers.

Because of the two orders of magnitude better efficiency of the

CO 2 laser over any other candidate laser presently known, I0.6 microns

is the only wavelength worth considering at this time for an optical,

spacecraft-to-satellite link. As indicated in Figure 3-4, performance

of a coherent system with one-meter transmitting and receiving

apertures falls slightly below performance of the 3 GHz spacecraft-to-

earth microwave link. However, if effective aperture diameters are

increased slightly to I. Z meters (still within the pointing error limitation

assumed), comparable performance results. Other than by an increase
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in transmitted power a further substantial increase in performance can

only be achieved by an improvement in pointing and tracking accuracy,

coupled with either larger aperture dimensions or a higher transmitting

frequency. The potential increase in performance is inversely pro-

portional to the square of the effective pointing error for both trans-

mitter and receiver. Thus the development of accurate pointing and
tracking techniques is critical to the development of an optical space

communications system.

For comparable performance, the aperture diameter of a non-

coherent receiver would be about 30 times that for the coherent

receiver and therefore unsuitable for a satellite relay station.

3.4 COMPARISON OF CANDIDATE SYSTEMS

Based on performance goals in terms of information rate,

of 106 bits per second for a microwave link and 108 bits per second

for an optical link, several specific candidate systems are compared

in Table 3-4. A signal-to-noise ratio of I0 is adequate to give

an acceptably low error rate for a suitable choice of modulation code;

thus the performance goals set correspond £o signal-to-noise

bandwidth products of 70 and 90 db, respectively, for the two regions

of the spectrum.

Parameter values are chosen generally within the practical

limitations previously described with system and spreading losses

as before. The increase in performance over present and planned

systems as required to meet the goals is distributed among three

system parameters: the two aperture areas and the transmitted

power, the equivalent noise performance having already been

extrapolated close to the fundamental quantum limit or to a reasonable

temperature limit. The specific apportionment of these improvement

factors is based on estimates of both development and engineering

effort and costs required for their achievement. While a program is

in progress to treat this problem rigorously, it represents a major

undertaking and pertinent results are not available at this time to

verify or modify the estimates made here.
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Two optical configurations are shown in the table: a direct

communication link between spacecraft and earth and a link employing

a satellite relay station. Parameters for both configurations are

given. An eventual choice between the two or between microwave and

optical links must depend on rigorous systems and cost analyses and

will certainly be influenced by the results of current and future

research programs.

3.4. I Direct Microwave Link at 3GHz

A 70 db information-rate parameter, R ° = (S/N) (B), is achieved

for the direct microwave link operating at a nominal frequency of

3GHz by postulating improved performance over the present state of

the art for each of the three parameters: receiving antenna, trans-

mitting antenna, and spacecraft transmitter. This represents an

overall performance improvement of 19 db over the communications

link projected for the Voyager mission. The increased requirements

are apportioned among the various components as follows:

• Ground based antenna gain +9 db

• Spacecraft antenna gain +7 db

• Spacecraft transmitter power +3 db

The proposed receiver antenna gain of 70 db requires an aperture

corresponding to a circular antenna diameter of 135 meters (55 percent

efficiency) or about 440 feet at 3GHz. (At Z. 3 GHz the required

diameter would increase to about 580 feet.) The difficulties of imple-

menting such an antenna in the form of a single dish are considered

prohibitory. As discussed in Section 4. 3. 5, therefore, a distributed

array appears to be the most promising solution. If a 70-percent

aperture efficiency is assumed, a rectangular array capable of effective

operation at zenith angles up to 30 degrees latitude and 60 degrees

longitude would have dimensions of about 400 x 700 feet at 3GHz (or about

500 x 900 feet at Z. 3 GHz). These dimensions are within expected

atmospheric correlation lengths, so that no measures are needed to
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compensate for atmospheric distortions. Operation is limited to a

maximum zenith angle of 60 degrees for the array to avoid excessive

and inefficient aperture dimensions; however, this will increase the

minimum number of receiver sites required for continuous coverage

from three to four. Note that at the reduced zenith angle atmospheric

background noise will be decreased so that an operating frequency
closer to 5GHz may be favored for the microwave link.

A gain of 39 db for the spacecraft transmitting antenna corre-

sponds to a diameter of about 4 meters. Since weight added to the
spacecraft entails a more than proportionate increase in booster

weight, a considerably lower performance increase would normally

be asked of the spacecraft component than of the ground-based antenna.

However techniques currently being developed for the deployment of

antennas after the boost phase of flight permit the consideration of

larger apertures at higher performance to weight ratios. Thus an

improvement close to that for the ground antenna is postulated for the
spacecraft antenna.

A nominal 3 db advance is allocated to transmitter power. An

increase in transmitter power involves a similar increase in space-
craft power supply and heat-dissipation capabilities and has, therefore,

a substantial effect on overall vehicle weight and booster requirements.

In as much as this weight penalty is unlikely to be reduced by any major

improvement in the efficiencies associated with these various processes,

the allowance for transmitter power has been increased to just 100 watts.

3. 4. 2 Direct Optical Link at i0.6 Microns

An information-rate parameter of 90 db is assumed as the goal

for an optical deep-space communication system in view of the greater

potential performance promised and in justification of the development

of optical communication techniques.

For coherent reception of a signal arriving at a zenith angle of

70 degrees, receiver aperture of only a half meter (50 percent aperture

illumination efficiency) would be expected to suffer a 3 db loss in
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aperture gain due to typical atmospheric distortions of the signal
wavefront. Careful selection of the site and perhaps tower-mounting

of the receiver should permit doubling of the aperture diameter for the

same overall aperture efficiency, giving a 6 db enhancement in the

signal. A further 3 db can be gained by increasing the aperture diameter
an additional factor of two at the expense of a factor of two loss in

efficiency. For greater diameters_ overall aperture efficiency

drops rapidly and there is little advantage to further increases. A

single-element receiver aperture is therefore limited to about a Z-meter
diameter corresponding to a nominal gain of 112 db but with a 6 db loss

(included among the fixed losses in Table 2} due to atmospheric turbulence.

The gain of the transmitter aperture is limited by the accuracy

with which the transmitter can be pointed at the earth station. For an

effective pointing accuracy of five microradians or a minimum allowable

beamwidth of ten microradians the gain is limited to I12 db correspond-

ing again to a Z-meter aperture diameter {50 percent efficient).

For a 20-db improvement in performance over the microwave link

it seems appropriate to ask for an increase in transmitted power of the

order of 7 db, account being taken of the fact that an increase in space-

craft weight must be paid for by a disproportionate increase in booster

thrust. This would give a transmitted power of 500 watts corresponding

to a raw power requirement of about 3. 5 kilowatts, which is not out of

line with spacecraft capabilities estimated for 1980.

The overall performance, in terms of the information-rate

parameter, for a single-element ground-based receiver is therefore

85 db. An additional 5 db is required to meet the 90 db goal. The

deficit can be made up in principle by an improvement in spacecraft

pointing accuracy from five to three microradians but at the expense of

a corresponding increase in aperture diameter. Alternatively, a three-

element receiver aperture could be used with individual aperture elements

phase-locked to the incoming signal to compensate for the atmospheric

phase distortion, and with signal correlation accomplished at the IF

frequency. The latter case is shown in Table 3-4.
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3.4. 3 Satellite Relay Link at 10.6 Microns

For a satellite receiver, aperture diameter is limited as for

the transmitter aperture by achievable pointing accuracies. For a

receiver, however, the pointing problem reduces to a simple closed-

loop angle-tracking problem internal to the receiver. Thus considerably

smaller pointing errors can be anticipated for the receiver than for the

transmitter where the detected error angle must be translated to a

predicted pointing angle for the transmitter to overcome such problems

as boresight misalignment and lead angle.

If an achievable rms error of 1. 5 microradians is assumed for

the receiver tracking angle, a gain of 177 db should be allowable for

the receiver aperture. This corresponds, however to a diameter of

about six meters and requires optical-quality fabrication tolerances

of the order of ¢/D = 10 -7. The fact that such an aperture exceeds the

dimensions of the Mt. Palomar telescope should not be used to dis-

connect entirely the possibility since, for a monochromatic radiation,

focusing techniques such as the use of Fresnel zone plates might be

developed to permit light-weight, space-deployable apertures.

A more predictable solution to the problem, however, would be

a receiver aperture of two meters, equal to the spacecraft transmitter

aperture, and having a gain of 112 db.

A transmitted power of 500 watts, similar to that for the direct

spacecraft-to-earth link is then required to meet the desired perform-

ance goal of 90 db.

The choice between a satellite-relay and a direct optical com-

munication link reduces to an evaluation of the costs of a satellite

receiver (one or at most two required) as opposed to multiple ground-

based receivers in widely-dispersed locations.
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4.0 RADIO FREQUENCY TECHNOLOGY

The present state of RF technology is well advanced. Relatively

efficient transmitting power sources and radiation detectors exist

throughout the microwave and millimeter wave regions although little
consideration has been given to the submillimeter region so far. (The

severe atmospheric attenuation in the submillimeter range restricts

useful terrestrial applications, and no advantage appears to be offered

over operation in the far IR for space applications.) While small

improvements in transmitter and receiver efficiencies and perhaps an

order of magnitude increase in available spacecraft supply power can

be expected over the next decade, a substantial increase in the channel

capacity of deep space communication links must come from higher

gain antennas.

The state of the art and the practical limitations of transmitting
power sources, detectors, and front-end components are discussed

first. This is followed by a discussion of antennas including the various

types, the performance limitations that apply, and appropriate candi-

dates"for deep space communications systems.

1
4.1 RADIO FREQUENCY SOURCES

4.1.1 Microwave Sources

A number of tube types are available in the microwave region of

the spectrum (I-30 GHz); these are summarized in Table 4-1. The

types of most interest are:

• The klystron, a well-developed and reliable tube

• The traveling wave tube (TWT), an inherently high average

power device

• Crossed-field devices, high in efficiency and light in weight,

which include the conventional magnetron, the amplitron, and

the many linear beam-type magnetron amplifiers

The significant characteristics of these three types are summarized in

Tables 4-7, -3, and -4, respectively.
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M-Carcinotron

Stabilotron

O-BWO
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Amplifier

M-BWA

Bitermitron

Amplitron

CFA

O-BWO

Oscillator Amplifier

TPOM CFA
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Bimatron

VTM FWA-CFA

Dematron

TWT

TPO

Magnetron

Klystron

Reflex

Klystron

Monofier

Monotron

Circlotron

Klystron

Table 4-1. Type classification of microwave tubes - oscillators

and amplifiers.

l0

2.

3.

4.

5.

6.

7.

9.

10.

II.

It.

13.

ADVANTAGES

Single envelope is practical for gains up to

30 db, depending on output power levels.

Much development experience exists both

at high power (megawatts) and lower drive

levels (tens of kws).

Bandwidths to 10 percent have been achieved

in high-power units; 5 percent or less is

more realistic at low power.

Klystrons can be made to operate with dc

beam supplies by employing switching or

modulating anodes.

Klystrons still offer higher power than any

other tube type.

Focusing is normally performed by
solenoids.

More design and development experience

exists on this type of beam device than on
any other.

Higher perveances have been achieved than

in TWTs. This permits lower beam voltages

for equivalent output power.

System reliability is enhanced in cases where

30 db gain is sufficient, since a single ampli-

fier stage is adequate.

Cooling techniques are known and optional;

air and liquid are common.

Since the klystron is a unidirectional device,

operation into a mismatched load is possible

without isolation, depending on system limits

of power and phase shift.

More recently developed electrostatically

focused klystrons offer reduced size and

weight.

Shorter electrical length per unit gain than

the TWT, thus suffering less voltage-phase

sensitivity.

DISADVAN TAGES

I. Longer electrical length per db of gain as

compared to cross-field devices.

2. Gains are about half those obtained with

TWTs.

3. Klystrons require a filamentary cathode and

gun for operation, thus more electrode

voltages are needed.

4. Higher beam voltages required for a given

output power than in crossed-field devices.

5. Bandwidth limitations are severe at low

power (tens kws); Z to 5 percent is typical.

6. Good voltage regulation may be required

for acceptable phase stability.

7. Efficiencies of 25 to 35 percent are typical.

8. Structure offers moderate filtering; may

require separate high power filters at an

additional cost to the system.

9. 'Reliability not reasoned to be as good as

cold cathode devices operated without gun.

Table 4-2. Klystron characteristics.
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ADVAN TAGES

1. Single envelope is practical for gains to about
60 db.

2. Much development experience exists both at

high power levels (megawatts) and tower

drive levels.

3. Bandwidths beyond 10 percent are common in

today's TWTs.

4. Can operate with dc beam supplies by employ-

ing switching or modulating anodes. Grid

control is possible at power levels below I0 kw.

5. Long length, small-diameter form factor is

suitable for phased arrays limited to tube

diameters of less than h/2.

6. Several types of slow-wave structures can be

cascaded in a single envelope to optimize the

RF coupling design.

7. Focusing can be accomplished by electromag-

nets, permanent magnets, or electrostatically,

depending on system requirements.

8. Reliability is enhanced by single-stage

operation.

9. Depressed-collector techniques ease regula-

tion requirements on high-current beam

supply.

10. Cooling techniques are known and operational;

air and liquid are common.

11. Severed or attenuated slow-wave structures

enable operation without circulators into a

mismatched load, depending on the limits of

phase tolerance.

13. No doubt exists about development and mass

production of TN Ts.

DISADVAN TAGES

1. Long electrical length per db of gain in

comparison to other tubes.

2. Phase sensitivity of RF output is very

dependent on beam voltage, because the

device operates on the principle of

synchronism between electron velocity

and RF velocity on the slow-wave

structure.

3. TWTs require a filamentary cathode and

gun for operation- more electrode volt-

ages are thus needed.

4. Low perveance of TWTs requires higher

beam voltages for a given power output

compared to other devices. High per-

veances involve hollow beams, whose

increased current density may cause

focusing difficulties and cathode loading

problems.

5. High gains usually require solenoid

focusing (or a recently proposed magnetic

matrix focusing technique). Solenoids for

high power tubes are large, require sub-

stantial power, and create packaging and

distribution problems.

6. Acceptable phase stability calls for good

beam voltage regulation.

7. Efficiency is ,,_25 percent without depressed

collectors. Depressed collectors ralise

efficiency by _ i0 percent.

8. Electrical structure offers very little

filtering. Separate high-power filters

may be needed.

Table 4-3. Traveling wave tube characteristics.

4.1.2 Millimeter Sources

Most of the successful attempts to develop sources in the milli-

meter wave region (30-300 Ghz) have involved extensions of microwave

techniques. Since the slow-wave circuit must have dimensions com-

parable with the wavelength, however, the problems of electron control

and thermal dissipation become formidable. These difficulties are

overcome more successfully in linear beam, or O-type distributed

interaction device s.
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ADVAN TAGES

1. Gains to 45 db possible with injected beam

variety; 10 percent bandwidth typical.

2. Good phase stability; fairly independent of

anode voltages, since velocity synchronism

is not an operating requisite.

3. Distributed emission type has shortest

electrical length per unit gain of all tubes.

4. Can operate with a cold cathode; electron

gun or filaments are avoided.

5. Reasoned to have long life compared to

filamentary devices.

6. Small in size and relatively light in weight.

7. Distributed-emission type provides the

lowest anode voltage for a given power output.

This simplifies the power distribution system.

8. Air or liquid cooling is acceptable.

9. Highest microwave tube efficiencies:

Injected beam -- 35 to 50 percent

Distributed emission- 45 to 65 percent

10. Operated at saturation to give a constant output

independent of input power variation; makes

a good limiter.

11. Can be used in a duplexed system with receiver

and duplexer on the low input side.

1Z. Structure is ideally suited for mass production

under tight mechanical tolerance control.

DISADVANTAGES

I. Limited gain of I0 to 15 db for distributed

emission and types.

Z. Has very limited dynamic range of output

power for a particular anode voltage and

varying input power.

3. Crossed-field tubes are bidirectional. Any

reflections into the output will return directly

to the driver or input circuit. A circulator

or isolator is thus necessary.

4. Injected beam types require very good regula-

tion of sole voltage for good phase stability.

Typical values are 20 degrees for a I percent

change in sole voltage.

5. In distributed emission types it is difficult

to initiate emission.

6. Perveance of injected beam types is com-

parable to that of TWTs, thus requiring

higher beam voltages for a given output

power.

Table 4-4. Crossed-field tube characteristics.

Available power levels for millimeter-wave tubes have increased

by three orders of magnitude since 1960, and efficiencies have been

increased to be competitive with microwave sources. Power levels of

the prominent tube lines supplied by various manufacturers are shown

in Figure 4-i for output ratings in excess of one watt.

4.1.3 Submillimeter Sources

Conventional RF techniques become impractical in the design of

devices for operation at frequencies above 300 Ghz. At present the

most effective means of producing power at these frequencies involves

harmonic generation from millimeter sources. The problem then

becomes the development of a nonlinear device to accept large input

powers. Notable success has been achieved with high-pressure gas
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Figure 4-i. Power characteristics of available high-power CW

sources.

discharge plasmas in this application, and there appears to be

considerable promise for further development. Maser (or SMASER,

the first two letters standing for "submillimeter") action has also been

demonstrated 2 in this region for laboratory devices having very low

output powers.

4.1.4 Solid-State Sources

Considerable attention is currently being given to the use of

solid-state transit-time devices as oscillators and amplifiers in the

microwave region. There are two types of transit-time devices: those

utilizing the Gunn effect 3 and those based on avalanche breakdown.
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At present CW output power levels are in the i-I00 milliwatt range with
efficiencies of only a few percent. However, the development of techni-

ques for correlation of the coherent output of multiple oscillators
could provide the basis for a distributed, light-weight transmitting

source.

4.1.5 Burden Considerations

Since device dimensions generally scale with wavelength, there is

a corresponding reduction in allowable fabrication tolerances for

efficient operation. The required manufacturing tolerances for

traveling-wave tubes are shown, for example, in Figure 4-2 as a

function of frequency. Thus manufacturing capabilities and associated

costs set a limit to the upper frequency range of mechanically struc-

tured devices.

Power dissipation in the device imposes another restriction on

performance. The rate of dissipation of RF-generated heat in the

power source is proportional to the area available for heat conduction.

Hence the power obtainable from a single device (for a given efficiency)

will vary, in general, as the inverse square of the frequency as shown

in Figure 4-3 for a TWT. This does not of itself represent a burden

on the system inasmuch as multiple units may be used as the trans-

mitting source. The weight per unit does not drop as fast in practice,

however, as the maximum output power, and as a result there is a

decrease in power to weight ratio (P/W) with frequency. This trend is

shown in Figure 4-4 based on state-of-the-art data.

2 _2Also plotted in Figure 4-4 is the function q / and the product:

MSB = (na/x 2) (p/w)

where rl is the efficiency of the device and _ its operating wavelength.

MSB represents a figure of merit for a spaceborne transmitter,

neglecting subsequent transmission and reception considerations. The

efficiency, n, appears as the square in this figure of merit since it

4-6



1.0
I I I I III1

10-1

io-z

w
-r

Z

U
Z

n*.
14J

g Iff 3
I--

2
Q

I--
<[
0

_D

i0 "4

iO"_

I I I lilll I I IIII1 I I I IIIII

_':';'_!?:'::" RA T RA R IR FOR SATISFACTORY OPERATION

STATE OF THE ART TWT _:i_

I I 1 I Ill'c_

I I I 11 III I I I I I I11 I I I I I 111 I I

10 9 i0 I0 I0 II

I III11

id z i0 =3

FREQUENCY, Hz

Figure 4-2. Required manufacturing tolerances for TWTs as a

function of frequency.

4-7



10 s

10 4

m 103

i--

_g
w

F-

n

0

10 2

I0

1.0

10 9

I I I I 1 t

I I I I I I1

I I I I I I I I I I l I II _

i i i I ill J I I I I Ill

I0 iO lO li i012

RF

HEATING

J l | li I I l I

IO I$

FREQUENCY, Hz

Figure 4-3. Power limitations for a single TWT.

4-8



Figure 4-4. Power to weight ratio and figure of merit for

spaceborne CW transmitter.

affects the spacecraft requirements for both supply power and heat

dissipation. The X" factor represents the improvement in antenna gain

for a fixed allowable antenna size.

1
4.2 RADIO FREQUENCY DETECTORS

Detector or receiver sensitivity is conventionally characterized

by the effective noise temperature, which is a measure of the receiver

noise referred back to its input terminals, or by the noise figure,

defined a s

Sin/N"
NF = in

Sout/Nout

T e, is related to the noise figure byThe noise temperature,

the expression

Te = (NF-1) T O

where T O is a standard temperature taken to be 290 °K.
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4. 2. 1 Micro/Millimeter-Wave Detectors

The more sensitive detection devices in this frequency range are

the conventional crystal mixers, parametric amplifiers, and masers.

Harmonic mixers are often employed at the high end of the range.

Crystal mixers are normally characterized by their conversion loss.

The noise figure of the mixer is then

NF = L C (NFIF + N R - I)

where L C is the conversion loss, NFIF is the noise figure of the IF

amplifier, and N R is the crystal noise ratio. The conversion loss is

defined as the ratio of RF input power to the measured IF output power

at the mixer. The crystal noise ratio, NR, is the ratio of noise power

developed by the crystal to the thermal or Johnson noise of an equivalent

resistance at 290°K and is typically about 2 in a well-designed system.

Estimates of best available noise performance from crystal mixers are

sumnnarized in Table 4-5.

Parametric amplifiers are generally available in the microwave range,

but in the millimeter region availability is restricted to experimental

models. Diode cutoff frequencies, associated with spreading resistances

and junction capacitances, prevent the practical extension of operation

beyond I00 GHz except by direct insertion of the diode into a cavity.

Masers are available in the microwave range. As is the case for

parametric amplifiers, operation at millimeter wavelengths has been

restricted to experimental models. Representative values of the best

noise performance at several frequencies are given in Table 4-7.

Hot carrier detectors are based on the application of microwave power

to a noninjecting point contact. As the majority carriers are excited,

a temperature gradient between the point contact and broad contact is

established, and a unidirectional thermoelectric voltage is generated

with frequency following as high as i00 GHz. Work 4 on these detectors

is in the experimental stage.
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Frequency Conversion Loss* Noise Figure Noise Temperature

l0 GHz

35 GHz

60 GHz

9 4 GHz

140 GHz

200 GHz

300 GHz

5.5 db

6.5 db

8.2 db

9 db

19-20 db

6 db

i0.3 db

ii.3 db

12 db

13.8 db

25 db

35 db

870 °K

2,800 °K

3, 60O °K

4,300 ° K

6,700°K

91, 000°K

910,000°K

":"Where only conversion losses are quoted, IF noise figure and
crystal noise ratio are taken to be 2.

Table 4- 5. Noise performance estimates for crystal mixers.

Frequency Noise Figure

1 GHz 0.8 db

3 GHz 1.3 db

9 GHz 2 db

14 GHz 3.5 db

94 GHz (estimated) i0 db

Table 4- 6. State-of-the-art performance of parametric
amplifiers.

Frequency Noise Temperature

2 GHz 10-15°K

8 GHz 20-25°K

35 GHz 130°K

81.3 GHz 300°K

94 GHz 200°K

Table 4-7. State-of-the-art performance of masers.
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4.2.2 Submillimeter-Wave Detectors

The mechanisms for detection of submillimeter radiation are

based on either a thermal effect or a photoelectric effect. Since thermal

response times are generally long (in the millisecond range), applic-

tions to high-data-rate communication systems are limited to detectors

utilizing photoelectric mechanisms. In general, these devices must be

cooled to reduce thermal lattice vibrations so that only electrons

absorbing the low electron energy (I.2 x 10 -3 ev for _ = l mm) are

excited to the conduction band. Detection has been demonstrated using

several semiconductor materials, and a superconductive detector

based on electron tunneling has been proposed. 5 In addition, detection of

submillimeter and millimeter waves by down-conversion to the micro-
6

wave region has recently been proposed and analyzed. The scheme

utilizes an appropriate quantum energy-level system of at least three

levels and is similar in operation to a three-level maser where the

roles of the pump and signal are reversed. At present, however,

definitive data are not generally available on detectors in the sub-

millimeter region.

4. 3 LOW NOISE PREAMPLIFIERS

The use of multiple-element receiving antenna arrays presents a

special problem. Because of the losses of beam forming networks,

phase shifters, and other phased array components, it is necessary to

include some form of low noise amplification before the high loss com-

ponent is encountered. The level at which the preamplification takes

place and, thus, the number and the gain of preamplifiers depend on the

quality of the other phased-array components. Most large phased array

systems now in use or under study utilize one preamplifier per group of

radiating elements or even one per radiating element. For the lowest

temperature possible, an amplifier per element should be used. Consid-

erations of cost, size, and system noise temperature requirements and

the state of development of the other components will determine the

optimum ratio of the number of preamplifiers to radiating elements.

In any case, a large number of preamps is likely to be required.
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At the present time there are five low-noise microwave amplifiers

which may be considered for use in a large phased array deep space
communication system. These are:

• Transistor Amplifier

• Tunnel Diode Amplifier (TDA)

• Traveling Wave Tube (TWT)

• Parametric Amplifier
• Maser

Brief discussions of the characteristics of these amplifiers are given in
the following paragraphs:

4.3. i Transistor Amplifiers

Microwave transistor amplifiers are relatively new devices which

have promise of moderately low noise figures. At the present time noise

temperatures of 200 to 625°K can be obtained at frequencies up to about

l GHz with approximately Z0 db gain. It is estimated that in ten years

120 ° to 170°K noise temperatures are likely at 2 GHz and feasible up

to 15 GHz. Transistor amplifiers appear to have their most useful

application as a second stage amplifier following an ultra low noise

amplifier.

4.3.2 Tunnel Diode Amplifiers

The tunnel diode amplifier (TDA) is the simplest solid-state micro-

wave amplifier and has moderate gain and noise characteristics. Noise

temperatures range from about 360°K at 1 GHz to 5Z0°K at i0 GHz using

gallium antimonide diodes. Germanium diodes have about I db higher

noise figures but are available for operation up to about 20 GHz. Single

stage amplifiers normally provide about 17 db gain. However, stable

gains as high as 30 db can be obtained by careful attention to tempera-

ture control and power supply stability. Bandwidths are more than

adequate for space communication systems. Noise figures of room

temperature TDA's are not expected to improve significantly. Such

TDA's will, therefore, be of use mainly as second stage devices

following ultra-low noise amplifiers.
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The noise generated by atunnel diode amplifier is largely caused by

shot noise from the diode bias current. The magnitude of this noise contri-

bution is determined by the characteristics of the material used and

can be reduced by using low energy gap materials such as indium anti-

monide. Such materials must be operated at cryogenic temperatures.

However, assuming that a suitable material can be found, a cryogenic

TDA with a noise temperature of Z0°K at l to 2 GHz would have a strong

advantage over cooled paramps and masers in that no pump power would

be required.

4. 3.3 Traveling Wave Tubes

These devices offer high gain and moderately low noise figures.

Noise temperatures in the 360 to 440°K range are presently obtainable

over narrow bandwidths up to 2 GHz. It is unlikely that noise tempera-

tures below about 225°K will be consistently obtained in the next decade.

The two major noise sources in a TWT are beam shot noise and thermal

noise from the attenuator. Present low noise TWT designs require

complex anode structures to achieve space charge smoothing for shot

noise reduction. Since no significant advances in space charge

smoothing have been made since the late 1950's, it is not anticipated

that major progress will be made within the next decade. Some

improvement in noise temperatures can be expected by cooling the

attenuator, but it does not appear that TWT's will be competitive with

cooled paramps.

4.3.4 Parametric Amplifiers

Parametric amplifiers have demonstrated room temperature

noise performance superior to that of transistor and tunnel diode

amplifiers and cryogenic noise performance approaching that of the

maser. In recent years the uncooled parametric amplifier has

achieved a level of reliability that has permitted applications on a broad

basis and in large numbers. Noise temperatures range from about

60°K at I GHz to Z50°K at i0 GHz for well-designed narrow band

amplifiers. 7 When cooled to 20 °K, noise temperatures between 14°K

at I GHz and 30°K at I0 GHz are possible with careful design using

4-i4



presently available components. Narrow band gains as high as 30 db

are possible using extremely stable temperature and pump power control.

Major advances for the cooled paramp are likely to be in cost reduction

and reliability particularly in the associated cryogenic equipment.

4.3. 5 Masers

Masers find applications in special areas where the ultimate in

low noise performance is either dictated by technical requirements or
provides the most economical solution to the problem. The noise

temperature of the maser itself is approximately that of its physical
temperature, approximately 5°K. To this must be added the noise

contribution of the section of input transmission line over which the

temperature transition to room temperature is made. For frequencies
in the range 1 to 20 GHz this contribution can be held to 5 to 10°K

giving an overall maser noise temperature of i0 to 15°K. Gains of

better than 30 db with bandwidth of l to 2 MHz or more are readily
obtainable with a cavity maser. The major disadvantage of masers is

that they must operate at a temperature of a few degrees Kelvin in

order to provide sufficient gain. The complexity and cost of a cryogenic
system increases rapidly as the temperature approaches 0°K.

Future improvements in the maser are also likely to be in the
area of reliability and cost reduction.

4.3. 6 Summary

A summary of the important properties of low noise amplifiers is

given in Table 4-8. Of the devices surveyed, only the maser and helium

cooled paramp can presently meet the low-noise temperature require-

i_ents for the down-link receiver in a deep-space communication

system, and a system based on reasonable extensions of today's state

of the art would require one of these two devices. The maser requires

a physical temperature of 4. 2°K or less while the paramp can provide

adequate noise performance at physical temperatures up to Z0°K. The

cryogenic system for the paramp would be considerably less complex

and less expensive. Barring the discovery of new types of ultra low
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noise amplifiers, the helium cooled parametric amplifier operating at

20°K presently appears to provide the most economical solution.

Transistor and tunnel diode amplifiers could be used as low noise second

stage devices.

For the implementation of large receiving-antenna arrays, then,

research should be directed toward cost reduction and mass production

techniques on cooled parametric amplifiers. At the present time the

future of the cooled tunnel diode amplifier is not certain. If a suitable

material can be found, it is, at least in principle, possible to construct

a tunnel diode amplifier operating at cryogenic temperatures with noise

performance approaching that of the cooled paramp. If such a material

can be found, the desirable features of the cooled TDA including basic

simplicity, no RF pump power, and moderate cryogenic requirements

will make it an attractive device for space communication systems.

4.4 ACTIVE RF COMPONENTS

The potential use of phased arrays for spacecraft transmitting

antennas requires a means of adjusting the phase at each element. Con-

ventional RF phase-shifters which are discussed under Antennas

(Section 4.5) have certain disadvantages: loss, weight, size, and power

consumption are some of the problems with these devices. Loss is

doubly undesirable because of the RE heating and because of the cost in

terms of weight, power, and reliability required for generation of the

RF power.

As an alternative to RF phase shifters, the phase shift can be
accomplished at a lower frequency and lower power level; the proper

phase is then injected into a mixer for conversion to the desired RF

frequency, and the RF energy is delivered, either directly or through

an RF amplifier, to the radiating elements.

4.4. 1 RF Amplifiers and High-Level Mixers

There are several RF amplifiers and high-level mixers which can

be considered. The solid-state transistor amplifier and the traveling-

wave tube (TWT) constitute two types. The TWT improves in efficiency
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as the RF power rating is increased; the filament power remains rather

constant irrespective of the RF power rating and thus accounts for a

large part of the loss of efficiency at low levels. TWT's upto 30 percent

efficiency have been space qualified with operating lives over I0,000

hours. A gradual, though limited increase in efficiency is anticipated

with, perhaps, some decrease in weight as the technology improves.

TWT's can be used in three capacities: (I) as the final RF amplifier

in the transmitter, (2) as the amplifier in every radiating module (for

every module one TWT), and (3) as a pump for high-level mixers.

The solid-state transistor RF amplifiers are in a state of flux.

Below 2 GHz, 5 watts (at 600 MHz) are being obtained. At 2 GHz, the

projection is for several watts with a 30-percent efficiency and a gain
8,9

of about 30 db, if the expectations are realized at this frequency.

As technology improves, this frequency will be increased to perhaps

4 GHz with similar power. However, the MERA engineers are pessi-

mistic about the higher frequencies, say 7 or 8 GHz. One alternative

would be the utilization of a frequency multiplier which is driven by a

2-GHz amplifier. The efficiency is still satisfactory, but phase as well

as frequency is multiplied.
The other approach is to use high-level mixers (also called

resistive or varactor up-converters). These devices are perhaps

interim in the state-of-the-art between solid-state RF amplifiers and

TWT amplifiers for modular units. Such a high-level mixer is similar

to the low-level mixer except for the direction of power flow for some

of the signal frequencies. It has three signal frequencies: RF input,

RF output, and IF input. Other signal components are rejected by

proper design. Either resistive or varactor mixing may be employed.
The former is limited to low levels on the order of I0 row. Varactors

are capable of I00 mw output per pair.
The efficiencies of these devices are good but they suffer overall

system loss since an RF pump is required. The RF pump power must

Molecular Electronics for Radar Applications
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be generated elsewhere, presently by TWT's and in the future perhaps

by solid-state oscillators. The overall efficiency of varactor mixer

and pump is perhaps l0 to 15 percent at best. Thus, the most promising

devices in the long run seem to be the solid-state RF amplifiers for

distributed amplification. Table 4-9 summarizes the characteristics

of various RF amplifiers and high-level mixers as available today.

It should be pointed out that phase and gain tracking must be

maintained between all amplifier modules. The most critical type of

amplifier in this regard is the TWT since it has many electrical degrees

between input and output. However, excellent gain and phase tracking

have been achieved from tube to tube for tubes specifically designed

for phase and gain tracking. From 8 to 12 GHz, deviation from true

time delays is 15 ° and I db rms.

4.4.2 Use of Multiplier Chains for Power Output Stages

One of the problem areas in self-steering arrays at higher

frequencies is the non-availability of efficient, medium-power, RF

amplifiers in the I00 mw range for use as final stage power amplifiers.

Transistor power amplifiers are presently suitable only up to about

2 GHz. For frequencies between 2 and i0 GHz the most practical RF

power source presently available seems to be the varactor multiplier.

Traveling-wave tubes become competitive in this frequency range only

when amplifier output powers of one or more watts are desired.

One class of self-phasing system uses frequency multipliers in a

novel way. In place of final RF power amplifiers, this kind of array

utilizes harmonic multipliers preceded by transistor power amplifiers

at lower frequencies. In many versions of systems based on this basic

harmonic multiplier approach, the incoming pilot and/or information

signals are divided in both frequency and phase so that after the signals

are multiplied back to the higher frequency for transmit, the same

bandwidth is retained as was present before they were divided down. It

should be mentioned that this scheme is generally restricted to FM
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systems because intermodulation problems arise in AM systems; both

division and multiplication are performed to the same factor (Z, 3, etc},

since division is a multi-valued function. That is, sin (2,_t + 2_)

divided by 2 can be sin (_t + ¢) as well as sin ('_t+ ¢+ ,_); but the second

harmonic of either of these is the same. As will be seen from a later

example, frequency division is generally performed with a conventional

phase-locked loop except that the usual voltage-controlled oscillator

(VCO) is replaced with a VCO followed by a harmonic generator. The

output of the VCO is thus the input frequency divided by the harmonic

used.

In the instance of a single frequency, such as a pilot frequency,

division may be performed by first down-converting to a low IF fre-

quency, then dividing with a digital counter stage, and finally filtering

to regain a clean wave shape.

Schemes which use varactor multipliers as final power output

stages do so generally because a better, compact, efficient RF power

amplifier is not within the present state-of-the-art. Systems can be

built now incorporating such power stages; the only other RF power stage

available above several GHz is the traveling-wave tube. In the UHF

region, efficient transistor amplifiers are available and multipliers

are not used. Work with multipliers at the Hughes Aircraft Company

has shown that the following typical multipler performance can be

obtained with a single varactor diode (Motorola MVIdI0): one watt at

5. 8 GHz can be multiplied (doubled) to one-half watt at Ii. 6 GHz; and

3 watts at i. 9 GHz can be multiplied (tripled) to one watt at 5.7 GHz.

The development of efficient, lightweight RF amplifiers or their

equivalent such as phase-locked solid-state oscillators is a critical

field of needed component research.
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4.5 ANTENNAS

Spacecraft and ground-based antennas are discussed in this

section as components of a link designed to fulfill the specific function

of providing constant communication from a spacecraft to the earth at

astronomical distances. For obvious reasons, the most attention is

given the down link aspects. Particular attention is also given to the

low microwave region, specifically 2. 3 GHz, since a frequency in this

region has advantages for an all-weather ground station and is pres-

ently in use in the NASA Deep Space Instrumentation Facility.
6

The requirement of a constant information rate of 10 bits per

second with a given probability of error implies a specific system per-

formance in terms of bandwidth and signal-to-noise ratio. When the

characteristics of the available transmitter and receiver are evaluated

or assumed, the required performance characteristics of the overall

radiating system are determined either directly or by implication.

The overall radiating system is taken to include the combination of the

spacecraft and the ground or relay station antenna equipment.

Two general areas that must be investigated relative to the

radiating system can be identified. The first concerns questions about

the signal level or gain that is provided, ways by which it may be

enhanced, and limitations that are encountered. The second area

embraces questions about the contributions made to the noise of the

communications link, the manner in which these are introduced, and

methods by which they may be minimized. These questions are, of

course, interrelated and the limitations encountered are intensely

practical and economic, as well as theoretical. During the study,

attention was directed to both areas of investigation with only partial

answers available at this time.

The requirement of a minimum signal level forces the sum of the

gains of the space and ground antennas to be of some value that can be

specifically determined for a particular mission. It is important to be

able to allocate the antenna gains at each end of the link according to
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reasonable expectations concerning the practical designs and perform-

ance characteristics that can be accomplished in the next ten years.

An optimam allocation of these gains is difficult and will require m,lch

investigation. On the basis of the plans for the 1971 Voyager mission,

the sum of the gains on future missions can be estimated to be about
ll0 db, or a 20-db increase over the gains specified in the Voyager

link for which a spacecraft transmitter of 50 watts has been postulated.

It becomes necessary to determine the aperture sizes and implemen-

tation techniques that can provide these gains.

Consideration is given in the next section (4. 5. l) to the aperture

size required to provide the necessary gain. This discussion is fol-

lowed in section 4. 5. 2 by consideration of some fundamental limitations

on the performance of high gain antennas. Although there are many

factors which limit the performance, emphasis has been placed on the

degradation of maximum antenna gain Caused by phase errors in the

effective aperture of the antenna. The cause of such phase errors may

lie in mechanical imperfections in reflector antennas, in electrical

errors in a phased array, or in phase decorrelation in atmospheric

propagation. The result depends only on the distribution and scale of

the error but is a significant factor in the limitation of the size of very

large antennas.

Because of the significance of the noise level in determination of

the overall gain requirement, an entire section, 4. 5. 3, is directed to

a consideration of the noise that competes with the signal and is col-

lected and introduced at the ground end of the down link. The conven-

tion of treating the noise as resulting from an equivalent antenna

temperature is followed. Since the noise level is highest when the

antenna beam is directed at or near a noise source, attention is paid

to the case in which the spacecraft is at or near conjunction with the

sun or a planet, and particularly to the effect of the sun in the antenna

sidelobes.

In section 4. 5.4, the state-of-the-art of potentially applicable

antennas is presented in relation to the problems of achieving very

high gain. Consideration is given to reflector antennas, phased array

4-23



antennas, and self-steering antennas. In secticn 4. 5. 5, antennas

for the ground-based stations are discussed, followed in section 4. 5. 6

by a discussion of antennas for spacecraft. Large phased arrays and

self-phasing arrays are considered for large aperture applications,

and several problem areas are presented which require further

study.

4. 5. 1 Gain and Aperture Requirements

In view of the background material discussed above, it is possible

to make some general assessments of the gain and associated aperture

required to provide nearly continuous communication between the

ground and the spacecraft of future missions. The planned character-

istics of the Voyager spacecraft to be used in the 1971 Mars probe and

the characteristics of the Jet Propulsion Laboratory 210-foot paraboloid

afford a convenient reference, since these characteristics represent

the state-of-the-art. Lacking more definite data, it is possible to use

Voyager characteristics as a basis to determine the incremental

changes necessary to achieve an information rate of 106 bits per sec-

ond for, say, 1 AU of range. The data of Table 4-10 are from JPL 10

and include the Mariner IV Mars probe of 1965 for comparison. Of

course, both systems operate at 2. 3 Ghz since they are part of the

present plans which call for use of the DSIF stations.

For Voyager, each antenna has a 55 percent efficiency, the over-

all losses are 10 db (pointing error, system, tolerance, lost power in
-5

sidebands, etc.), and the probability of error per bit is P = 10 .
e

The rate parameter, _o' is 1. 3 x 105 per sec, and for biphase coding,

_o/_ = 10 and B/_ = 1 (Figure 2-1). The Voyager spacecraft data are

projected design data and presumably represent the forefront of the

art in view of spacecraft technological problems and booster capability.

It can be noted that the Voyager spacecraft, as planned, represents an

improvement of approximately 15 db in the product of gain and power of

the transmitter (PTGT) or the effective radiated power (ERP) as com-

pared with Mariner IV. It can be reasonably assumed that the ERP can

be further improved by straightforward designs of the spacecraft
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Program

1965

Mariner IV

575 pounds

1971

Voyager

7000 pounds

Projected

Space Transmitter

P
T

(watts)

10

G T

(db)

24

(3-foot

dish)

32

(7-foot

dish)

Ground System

O R T a

(db) (°K)

53 55

(85-foot

dish)

61

(210-foot

dish

5O 25

Data Rate

(bits/sec)

34

(planned but

not achieved)

iZ, O00

106

Table 4-I0. JPL Communications Capability at 1 AU.

antenna and associated components and by increase of the transmitter

output power as allowed by expected enhancement of propulsion and

spacecraft performance.

Extrapolating from the planned Voyager characteristics, it can be

observed that to increase the data rate to 106 bits/sec requires an over-

all increase in effective link gain of about 20 db. How this 20 db

increase is divided between the ends of the commanication link is a

practical and economic matter that depends on capabilities of the booster

and spacecraft components and on the communication techniques to be

used. If it is assumed, for instance, that no further burden can be

placed on the spacecraft components, then the ground system must pro-

vide all the gain enhancement with a resulting gain of about 80 db at

2. 3 GHz. As a point of reference, this gain is equivalent to that of a

circular aperture with a diameter of approximately Z000 feet. A para-

bolic dish of this size is relatively impractical, since it must be

assumed to have the same surface tolerance and illumination efficiency

as the 210-footJPZdish and to maintain the same noise temperature and

greater pointing accuracy. Arrays on the order of 2000 feet on a side are

perhaps somewhat more feasible but certainly costly. Some of the

required improvement can be transferred to the spacecraft components

to make the size of the ground antenna more manageable.
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A 10-db improvement in the gain of the antenna on the vehicle

would require, for the same level of aperture efficiency as the Voyager
antenna, a ten-fold increase in area. Such an area increase corre-

sponds to an aperture diameter increased to about 22 feet with a result-

ing half-power beamwidth on the order of I. 3 degrees at 2. 3 GHz, as

opposed to roughly 3.7 degrees for the Voyager 7-foot dish.

With the 10-db gain improvement in the spacecraft antenna and

some enhancement of transmitter power, it can be anticipated that the

gain of the ground antenna will now lie between 60 and 80 db. The

diameters of circular apertures corresponding to these gain bounds at

2. 3GHz are slightly less than 200 and 2000 feet, respectively, with the

supposition that the beam is formed perpendicular to the aperture and

that an allowance is made for taper and other losses. The 3-db beam-

widths are on the order of 0. 13 degree and 0.013 degree, respectively.

It is a reasonable working assumption that the improvements

can be effected at both ends of the link. The result would be that the

gain of the ground antenna would fall in the neighborhood of 70 db and

its active area would correspond to that of a circular aperture of about

600 feet in diameter. The noise energy collected by the antenna affects

the final determination of aperture size, however, and noise considera-

tions are taken up in succeeding sections. The noise is important in

determinations of the required sidelobe level and the necessary taper of

the aperture distribution. Cases of particular interest occur when the

spacecraft approaches a radiating body such as a planet or the sun, with

the near approach to the sun in angle constituting a limiting case.

4.5. 2 Phase-Error Limitations

Random phase errors across the aperture illumination can degrade

the gain, increase the sidelobe level, and cause null-filling. The phase

errors may result from a variety of causes and have vastly different

correlation distances that depend on the nature of the source. In

general, they can be divided into three classes:

• Small scale phase errors of a truly random nature whose

correlation interval is small, much less than the dimension
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of the aperture but greater than the wavelength. This class

of errors is associated with manufacturing tolerances and

certain atmospheric effects which tend to have small corre-
lation distances.

Slowly varying phase errors over the aperture whose corre-

lation interval is on the order of the characteristic physical

dimension of the aperture. This class of error is almost

systematic and arises from physical distortions, such as

bending or warping of the main support structure, or from

any large scale distortion of an incoming wavefront.
Phase errors associated with the individual elements or

subarrays whose correlation interval is intermediate

between the other two classes of errors. Examples of these

intermediate errors are the positional errors in the antenna

mounting to the support structure and the errors in amplitude

and phase of the signals fed to each element by the feed

system.

Effects Due to Random Errors. The degradation of two-dimensional

antenna gain due to random phase errors has been analyzed statistically

by Ruze. II The phase errors of concern here are those random phase

errors caused by loose machining tolerances and random distortion of

the aperture surface. Ruze considered both discrete array and con-

tinuous aperture antennas. In general the same statistical considera-

tions apply to each type. In the discrete array, the error in one array

element is independent of the errors in adjacent elements. However,

this assumption does not hold for a continuous aperture antenna since if

the error is large at one point, it will probably also be large in the

immediate neighborhood. Therefore, a correlation interval, C, is

defined as that distance, on average, at which the errors become

essentially independent.

Ruze shows that the gain of a continuous aperture is degraded to

a greater extent as the correlation interval is increased. This relation-

ship is shown graphically for a parabolic reflector antenna in Figure 4-5

in which a family of curves representing different values of C is plotted.
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Figure 4-5. Reduction of gain

of parabolic mirror

(from Ruze).

It should be noted that gain drops

sharply for large values of C.

Errors with both large and small

correlation intervals can be

expected in either large reflectors

or large fixed arrays; hence, the

utmost care in fabrication must be

exercised to keep the correlation

intervals small, or at least to keep

the errors associated with large

correlation intervals to very small

values.

Distortions of the reflecting

surface of reflector antennas cause

twice as much degradation of gain

as do equal distortions in phased

arrays because of the two-way path of a reflected signal. Figures 4-6

and 4-7 present the error-free antenna gain and gain with random phase

errors as functions of aperture size for a correlation inverval of C >k.

The root mean square phase error in each figure is a particular frac-

tion of the electrical diameter. Therefore, the rms phase .error on a

given curve becomes larger as the diameter increases, and the error-

free gain and random phase error gain curves diverge. The effect of

such errors on the sidelobe level and pointing direction of large arrays
12 13

has been studied by both Elliott and by Rondinelli. The latter has

very conveniently computed maximum sidelobe level within a specified

cone and also everywhere outside such a cone, in probabilistic terms,
14

using the well-known Q-functions of Markum. Several different

random variable distributions are considered.

For a given tolerance, pattern deterioration is found to decrease

as the array is enlarged. In addition, for the same tolerance, pattern

L Zdeterioration is less for a planar array of size than it is for a linear

array of length L. Finally, the increase in sidelobelevel due to random

errors may be shown to be independent of scan angle for scanning antennas.
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Effects Due to Systematic Errors. Systematic phase errors (those

with a large correlation interval) across the aperture of a large array

of small elements, a large array of sub-apertures, or even across the

continuous aperture of a large reflector antenna can result in a signifi-
15

cant loss in gain. Bailin has reported on losses of this type. Effects

on gain for certain types of systematic distortion were calculated for

the first three bending modes of distortion and were found to be similar.

Figure 4-8 shows the degradation in gain plotted for the first and third

bending modes for a paraboloid to be used in space. This type of devia-

tion approximates the kind of distortion expected from the thermal

environment on a space mission. The data shown in Figure 4-8 are

based on Bailin's theoretical work 15 for uniformly illuminated linear

apertures and are a conservative estimate for the effects of sinusoidal

distortion in a radial mode on the gain of a circular aperture with a

tapered illumination. An evaluation of sidelobe level and null filling

may also be made from Bailin's equations.

The deflection of an aperture surface due to construction tech-

niques or thermal effects tends to increase linearly with the diameter

of the reflector; consequently, the size of the reflector is limited by the

achievable tolerances, in addition to other limiting factors. The

$S0 50033P-g2

I

A

A

/

O.OS O.t6 0.24 0.32

MAXIMUM APERATURE DEVIATION, A,IN WAVELENGTHS,

Degradation in gain due
to sinusoidal deflection

of paraboloid.

Figure 4-8.

relationship between the reflec-

tor or aperture size and the

tolerances is illustrated in

Figure 4-9. Tolerances are

given in terms of ratio to the

diameter so that each curve may

be related to a particular fabri-

cation technique, and deviations

tend to increase with the size

of the reflector. The situation

and the results are similar to

the random error case discussed

above.
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Figure 4-9. Gain versus reflector distortion.

Clusters of large apertures would also have a tendency to generate

grating lobes because of gaps in the aperture and because of phase

errors that may exist in the electronic equipment used to tie the indi-

vidual elements together. A large phased array of smaller elements

would also be subject to systematic errors of the type affecting the

paraboloids even though such an antenna would have essentially no gaps

in the aperture. Thus, the data presented for paraboloids may also be

indicative of systematic phase errors in large arrays of a discrete

element or clusters of elements in subarrays.

Pattern Degradation Due to Errors of Intermediate Size. The effects

of phase errors of the third class on sidelobe structure, gain, and beam

pointing direction can be conveniently and easily studied parametrically

as a function of element or subarray spacing, frequency of operation,

and error distribution by means of one of the several medium-sized

time-shared computer systems now available to engineers. By incorpo-

rating a pattern plot routine into the computer program, a study of the
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complex far-field radiation as a function of the error parameters is

made. Meaningful results can be obtained in a few minutes once a

relatively simple program has been established for a particular antenna

configuration or set of parameters.

Atmospheric Effects and Considerations of Gain Degradation. A semi-

quantitative discussion will be given in this section of the effects

produced by turbulence of the atmosphere on the propagation of electro-

magnetic waves and on gain degradation of large aperture antenna

systems. The atmosphere is in continuous turbulent motion and is,

therefore, neither uniformly stratified nor homogeneously mixed. The

exact structure of the turbulence is an extremely complex function of

space, time, and meteorological state. If these atmospheric irregulari-

ties can be considered randomly varying, the turbulence may often be

described in the form of a statistical model which may be of use in

investigating a varied number of effects arising in propagation. These

types of investigations have been carried out in detail by a number of
16

authors.

In order to give a description of the possible effects involved, it

is usually assumed that the correlation in the refractive index at two

different points of the atmosphere is only a function of the separation

of the points and independent of time. The suppression of the time

dependency is considered justifiable since the variations occurring in

the atmosphere are relatively slow as compared with the information

rate normally used in communication. With this assumption, the corre-

lation function for the atmospheric dielectric constant can be given by

the expression

< A((r)A((r + ro)>

C(ro) = 2 (I)
< (at)>

which describes the cross correlation between simultaneously varying

values of permittivity at two locations, separated by a distance r . The
o

magnitude of the phase and amplitude fluctuations of a planar wave may

be obtained from integral expressions of C(r O) derived with an
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appropriate model of the atmosphere considering the irregularities.

If _o is assumed to constitute the average size of the atmospheric
irregularities or blobs, the correlation function can be conveniently

stated as a function of r /_ so that the scale length or magnitude of
o

atmospheric turbulence can be taken into consideration.

Since the magnitude of atmospheric blobs will vary, they contri-

bute different distributions of phase errors which may be classified by

their correlation intervals into the three classes of errors discussed

previously. The correlation function used to describe scintillation

error due to rain will have a small correlation interval since the blob

sizes are small. The non-uniformities in the rainfall will, on the other

hand, contribute scintillations that vary at a less rapid rate but are of

great magnitude. The blobs causing these will have a correlation dis-

tance which is greater than a wavelength and, possibly, as large as the

aperture size of the antenna. Phase perturbations caused by variations

in dielectric constant of the atmosphere will be caused by atmospheric

blobs which will also have correlation distances that are large relative

to a wavelength and that often extend beyond the aperture size of the

antenna. In general, the correlation distance will depend on the partic-

ular type of atmospheric irregularity with which it is associated.

For a discussion of the process required to determine the phase

perturbation in the wavefront, it is assumed that the dielectric variations

are uncorrelated. A ray emanating from a point source after traveling

through one blob will have a mean square deviation from the mean of

its phase front that is equal to _2<(A_)Z> where <(A_)2>is the mean

square fluctuation of the refractive index of the blob. At a distance R

from the source, the ray will have propagated through R/_ uncorrelated

blobs, and the mean square deviation from the mean of the phase will

become R_< (A_)2>. This value can be used directly to determine the

gain degradation for an aperture of gain, G , from the results of Ruze:
o

o:o 11-< 21o > (2)

G = Go ] I- R_<(Ae)Z> 1

II
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where G is gain of the system operating in the turbulent medium. The

evaluation of<82>is complex and will not be attempted here. The

estimation of the phase perturbations depends on the correlation model

employed and on the position and orientation of the antenna relative to
the turbulent medium. The results, therefore, can vary considerably

depending on the assumptions made.

It should be emphasized that very little conclusive experimental

evidence exists to substantiate the validity of any of the analyses that

have been performed, especially for large aperture systems, on which

atmospheric turbulence may prove to have a considerable effect for
adequate system performance. Although many experiments concerned

with signal scintillation studies and correlations in scintillation between
17

two or more apertures at various spacings have been made, the

results give no information on actual phase variations across the aper-

tures themselves which is required to estimate the degree of gain

degradation involved. For the studies that have been performed, rela-

tively little correlation with existing meteorological conditions was

accomplished so that system performance for varied atmospheric

conditions could be analyzed.

4. 5. 3 Antenna Noise Temperature

The characteristics of a large, ground-based antenna system for

one end of a deep space link are, to a great extent, determined by the

noise that competes with the potentially weak signal from a distant

spacecraft. The noise received or the equivalent antenna temperature

under certain special conditions of a deep space mission is especially

important in determining the overall gain requirement, the required

sidelobe level, the average value of the sidelobe level, and the neces-

sary distribution taper. In an effort to establish some criteria for the

selection of certain of the critical antenna design parameters, consider-

ation has been given to the noise temperature contributed by losses in

the antenna itself and by atmospheric attenuation, by the presence of a

warm earth, by nearness to planets, by galactic noise, and by the sun

in the antenna sidelobes.
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Considerable information on extraterrestrial noise and attenuation
18-23

has been published. Most of the available results have been sum-
marized in two publications, i0, 21 One of the most important antenna

characteristics of a high-gain system is the response to various warm

objects in the sky and on the earth. In a reflector antenna, both the

main reflector pattern and the spillover from the primary feed pattern

contribute to the noise temperature. For an evaluation of the antenna

temperature, the entire diffraction pattern of the antenna should be

considered. The basic equation required to calculate the antenna noise

temperature is

fT(e, ¢) G (e,_) d_
T = (3)

a fG (e,_) d_2

where

T (e, qb) = noise temperature as a function of an angular position

in space

G (@, ¢_) = antenna gain as a function of an angular position in

space.

d_2 _- solid angle element

The numerator of Equation (3) may be used to determine the effects of

various warm objects as they interact with the different portions of the

antenna pattern. Thus, by a subdivision of the above integral, Equa-

tion (3) may be written as

_2B f2M f_B'
T = (4)

a ,[fo 1
where

T E

T S

= earth temperature

-- sky temperature
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G M =

G B =

a M =

fi B =

t2' B =

main lobe gain

minor lobe gain

space integral over main beam

space integral over the minor lobe with an earth background

space integral over the minor lobe with a sky background

When G is properly normalized, the denominator becomes

G d_2 4_

all space

or slightly less because of ohmic losses in the antenna. The effects of

warm objects on antenna performance can be estimated from an exami-

nation of the contribution of each of the portions of Equation (4).

Antenna Loss. One important source of noise which is not covered by

Equation (4) but nonetheless competes with the signal arises from the

ohmic losses in the antenna itself. If the sky temperature is T S, the

antenna has a power transmission coefficient r, and the antenna is at

ambient temperature T o , then the effective antenna noise temperature

is

T = rT S + (l-r)T (5)a o

Thus, I db of loss contributes 60°K if T = 300°K. Losses of this
o

level are common in present-day phased arrays because of inefficient

phase shifters and the aperture mismatch problem in matched-feed

phased arrays. These contributions to noise can be reduced only by

improved component design, by the use of low-noise amplifiers, or by

cooling the entire array if it does not impair any components. Although

considerations of this kind concerning the various components and their

interconnections are a part of good antenna design, the availability of

the actual components in a suitable form will greatly influence the
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selection and antenna type for any large aperture. Any attenuation

effects in the atmosphere can be treated like antenna loss since they

are in series with respect to the overall system performance.

Warm Earth. An important noise contribution is made by warm objects

from which energy leaks into the minor lobes of the antenna pattern.

The noise leakage from the warm earth, even though it is largely

excluded by the antenna directivity, is considerable because it enters

from almost all the back lobe hemisphere. It can be seen that the

first and third integrals in Equation (4) cover the space occupied by the

minor lobes and are to be taken over the lower and upper hemispheres

except for the main beam angle. This exception is very small for a

large aperture. The main beam contribution is represented by the

second integral. If it is assumed that GB, T E, and T S are fairly con-

stant over each of the appropriate hemispheres or that they represent

the average values, then the equation for T a without the main lobe

contribution becomes

G B

Ta-4_r [TE f d_+ T S f d_ I (6)

lower upper

hemisphere hemisphere

Since the integrals are essentially taken over hemispheres for which

d_ = Z_r

then

G B
T = -- + (7)a Z (TE TS)

This equation shows the dependence of the antenna temperature on the

average minor lobe gain, G B. The factor of I/2 merely states that

essentially one-half the space surrounding the antenna has an earth

background while the other half consists of a sky background. Thus

the effect of the warm earth may be calculated from the backlobe

radiation characteristics.
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The contribution to antenna temperature from the warm earth

must be kept to a minimum in an extremely low-noise receiving system

(system noise temperature of 10°K to 40°K). The required range of

average minor lobe gain may then be determined. For instance, if the

maximum allowable contribution to the antenna temperature due to the

warm earth is taken as 5°K, then the average minor lobe gain must be

14. 9 db below isotropic; similarly, 10°K corresponds to an average minor

lobe gain of ii. 9 db, and 15°K::-"corresponds to 9. 7 db below isotropic.

Stated in a slightly different way, the average minor lobes must be

84. 9 db, 81. 6 db, and 79. 7 db below the main lobe of a 70-db antenna

in order to maintain a contribution to antenna temperature due to the

warm earth of less than 5°K, i0 °K, and 15°K, respectively.

Sky Noise as a Function of Frequency and Weather Conditions. A

distribution of galactic noise can be considered next. The antenna

temperature T a is related to the source distribution T s and the antenna

gain G by

T a _l f- -rr G Ts d,q =Ts (8)

where the last approximation is valid for a hot region that is larger

than the beam. Distributed noise is most serious along the galactic

equator, particularly in the direction of the galactic nucleus near the

constellation Sagittarius. Unfortunately, the ecliptic passes through

Sagittarius and cuts the galactic equator again near the constellation

Taurus. Galactic noise has a temperature dependence as f-5/2; conse-

quently, frequencies above l GHz are favored as the operating band

for a deep space communication system. On the other hand, the atmos-

pheric absorption and the atmospheric noise in bad weather are serious,

and frequencies below 7 GHz are indicated. JPZ's DSIF system has

settled on 2. 3 GHz, and the noise temperature for their 210-foot

reflectors is expected to be 25 °K. I0

::-'.Anantenna temperature of 15°K has been reported for an 85-foot
22reflector measured at 2. 388 GHz.
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This result disregards the effect of discrete noise sources which

contribute to the antenna temperature in accordance with the flux density
2

H (in watts per meter per Hz in the polarization of the antenna), the

effective aperture Aa, and Boltzmann's constant k:

2

(°*a)T - a T (9)
a k - s

where O s and Oa are the angles subtended by the source and the antenna

beamwidth respectively. Fortunately, most of the radio stars are not

in the zodiac and may be disregarded insofar as the contribution to the

main beam is concerned. At Z. 3 GHz the most intense radio star in the

zodiac is Taurus A with a flux of about 8 x 10 -24 watts per sq. meter 2

per cps and a frequency dependence of about i/f. 23 The remaining

sources are the planets, the moon, and the sun which are discussed in

the next two sections.

The sun is by far the most significant source with a temperature

of 105°K at 2. 3 GHz and a i/f dependence. When the antenna is looking

at the planets near conjunction, the sun will be a major source of inter-

ference because of its large I/Z-degree disc and high temperature.

Since the sun and some of the other discrete sources have i/f frequency

dependence, the 2. 3 GHz used by JPL is not optimum for discrimination

against these sources. For example, when the range is extended from

l to 10 GHz, the sun's temperature drops by a factor of i0, but the

atmospheric attenuation is small and changes little over this band.

Where the antenna may be looking close to the sun, therefore, a fre-

quency closer to l0 GHz would be better. The optimum frequency is

clearly dependent on mission requirements; Z. 3 GHz is a good choice

in terms of galactic background noise and rainy weather conditions, but

a higher frequency will have advantages for operation against discrete

noise sources. More study is required to select the single optimum

frequency or to select different frequencies for different conditions.

It may be noted that during the 1971 and 1973 Martian optimum

opportunities, Mars is viewed at night from each station and the sun
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plays no role. Similarly, when the antenna is looking at the inferior

planets near greatest elongation, the sun plays a negligible role. On

the other hand, for missions of long duration it may be necessary for

the station antenna to look at a vehicle in close angular proximity to

the sun. The effects of strong discrete sources in the sidelobes are
discussed in following sections.

Noise Temperature Due to Planets. Once the order of magnitude of the

aperture size has been established, it is important to examine the

values of the sky temperature as seen by apertures with narrow main-

beams and low sidelobes that are achieved by tapering the illumination

functions. The sky temperature seen by an antenna with beamwidth Oa

when pointed at a hot planet of temperature Tp, and disc Op (angle

subtended by the planet at the earth), is obtained from the second term

in Equation (4) as

Ta= T [0P_ 2

P\Oa/

(IO)

if Op __Oa. If the object fills or is larger than the beam, T a = Tp. For

circular apertures with illumination functions of the form (i - r2) Z which

corresponds to an illumination efficiency of 56 percent, the peak side-

lobe is approximately 31 db. The 3-db beamwidth of a Zl00-foot

aperture is 62 seconds of arc and that of a 1000-foot aperture is 130

seconds of arc (at 2. 3 GHz). These beamwidths are on the order of,

or larger than, any planetary discs except the moon and sun whose

temperatures are 200°K and 105°K respectively at 2. 3 GHz. The

results for the nearer planets calculated for two antenna sizes and on

the basis of planet temperatures as given in Reference iZ, Section 2. 6,

are listed in Table 4-1 I.

From Table 4-11, two items are apparent. First, the tempera-

ture seen by the mainbeam of an antenna when looking at a hot planet

increases with increasing size of the aperture if Op __ 8a' Second,

when the beam points directly at a hot source, the noise temperature

can exceed a nominal design level of 25°K and, consequently, the
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Planet

Venus

Jupiter

Mars

Noise Temperature
Source

Temperature
oK

580

800

217

Maximum Disc

(seconds)

65

48

25

2100-foot

reflector

58O

480

35

o K

1000-foot

reflector

145

ii0

8

Table 4-11. Effective noise temperature at 2. 3 GHz due to planets

for two antenna apertures.

information rate and bandwidth must be reduced by large factors to

maintain the error rate. It is also to be noted that an increase in the

aperture size does not improve these factors until the beamwidth is

smaller than the planetary disc. This is apparent because the infor-

mation rate _ depends on the parameter G o which is a measure of the

ratio S/N. For Op < @a and T a = T s (no environmental noise or losses

in the antenna),

1

2

GR Oa 1
T - Z (Ii)

which is independent of the aperture. However, for Oa < @p, Ts = Tp

and 2 o is proportional to G R, the gain of the receiving antenna, which

varies with the area. Thus, by using a larger aperture, the informa-

tion rate _could be increased for communication with probes in conjunc-

tion with Venus and maybe even Jupiter, but very large increases over

2100 feet in diameter would be required for improvement in the cases

of the other planets. Alternatively, a small aperture will do as well as

a big one when the space vehicle is in conjunction with the large hot

planets. In any case the data rate will be low since it is limited by

 o/B.
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Effects of the Sun in the Sidelobes. The most intense of the discrete

astronomical noise sources as seen from the earth is, of course, the

sun, which can introduce a significant noise contribution through the

antenna sidelobes. The sun is a particularly effective contributor to

the noise level when communications are to be maintained with probes

on missions to the inferior planets. Since it is apparent that when it is

in the mainbeam of the antenna, the sun with a noise temperature of

105°K (at 2. 3 GHz) would saturate any presently conceivable receiving

system, it is imperative that a study be made of the effects produced

by the presence of the sun in the sidelobe region of the radiation

pattern. An analytical technique has been developed for evaluating

these effects quantitatively, at least under worst conditions in which

the antenna temperature is evaluated along the envelope of the far out

side-lobes. The principal objective of this analysis was to determine

the optimum distribution of the excitation across the aperture as it

relates to total cost of the ground antenna and the number of days that

noise from the sun precludes high data rate communication with the

spacecraft.

In Appendix A, a calculation is made to determine an angle 8o

(shown in Figure 4-10) which represents the closest approach that the

peak of the main beam may make to the sun without having the antenna

noise temperature exceed an arbitrary value of Z5 °K. The angle eo

is then reduced to a parameter Pwhich can be described as an effective

diameter of the sun normalized to the optical diameter. The peak of

the main beam of the ground antenna must then avoid this effective

diameter of the sun to assure continuous communications. This tech-

nique may, of course, be used to calculate the effects of other large

noise sources in the sidelobes of the ground antenna.

An attempt is then made to estimate the occultation time, N, for

a typical Jupiter trip as a function of p and the illumination function of

a circular aperture of the form (I - rZ)P where p is a small integer. ':_

The illumination is characterized by the level of the peak of the first

;:-'Thisfunction was chosen for convenience because the radiation

characteristics are available in Silver. 24
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Figure 4-10. Circular aperture pattern.

sidelobe level, because this is the convention in antenna design. The

occultation time is defined, for present purposes, as the time during

which the sun's contribution to the noise temperature of the antenna

equals or exceeds 25 °K. A determination is made of the size of the

aperture required to maintain a given peak gain as the distribution is

altered to lower the sidelobe level. The size thus determined is

incorporated in the expression for P in such a way that pand N can be

plotted versus the first sidelobe level for a given peak gain. As shown

in Figure 4-11, P drops very quickly with the first sidelobe level for

various values of taper and levels out at about 25 db. This same effect

is shown more dramatically in Figure 4-12 in which N is shown plotted

against the height of the first sidelobe which determines the amount of

taper. It can be seen that it is not fruitful to consider antenna designs

with very severe taper, since it will not improve the P or the occultation

time very much.
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Figure 4-1Z. Lost communica-
tion time.

An important aspect of

the design of a ground-based

antenna for space communica-

tion is the trade-off between

antenna cost (not including

real estate) and the capability

of pointing the antenna beam

near the sun. This problem

is examined in detail in

Appendix B in which the cost

of a single ground station that

yields 70 or 80 db gain is

estimated. A circular array

of parabolic reflector antennas

is used for this purpose since

costs for such antennas are

well established. It is

assumed that the antenna sys-

tems consist of arrays of 85-

foot and 210-foot paraboloids

and that the illumination

function is the same as is

used in Appendix A. Then

for a fixed peak gain, the size

of the aperture, or the number

of parabolic "elements",

required will be a direct

function of aperture efficiency

and indirectly of the first

sidelobe level. The expected

cost thus becomes a function

of the first sidelobe level and

a curve of this relationship

is plotted in Figure 4-13 on

4-44



2.0 - 8,0

1.8

T.O

I.S

S.O

1.4 :

z S,0

i,z w"
J •

¢, t-
o z

° _m 1.0 4.0

u

" 0.8 c_
u _ 3,0

([
a.

0.6 "

2.0

0.4

1.0

0.2

O- 0
15

Figure 4-13.

17.6

l|

It

II

II,I

II

t._.-
L---
I

20

COST OF 80 db ANTENNA SYSTEM

USING 210 FOOT PARABOLOIDS_

C/OSTOFSO db ANTENNA

USING 85

J
\

\J

Jx_ FOR,O,bANTENN,_

FOR 80 db ANTENNA

/

SYSTEM

FOOT PARABO_

J
f-

/

COS'r$ FOR "tO db

ANTENNA SYSTEM

210 FOOT PIARABOL01D8

./85 FOOT PARABOLOIDS

25 80 55 40

FIRST SIOELOBE LEVEL, db BELOW MAIN BEAM

45

Occultation time versus first sidelobe level.

the same graph with N, the occultation time, versus first sidelobe level.

Then the cost of reducing N by using a tapered distribution to reduce

the sidelobe level while maintaining a fixed peak gain is easily visualized.

The conclusion to be drawn from the analysis is that antenna

systems of high aperture efficiency (uniform illumination) cannot be

pointed near the sun without degrading system performance. However,
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Figure 4-14. Estimated costs of

antenna systems
versus occultation

time. approximately 21 db below the

mainbeam instead of 17.6 db.

For a 70-db antenna, cutting the value of N from 8 days to 1 day requires

a tapered illumination with a 25-db first sidelobe. The results show that

reducing the occultation time in this manner to a value of less than about

one day is very expensive and suggests that either N be allowed to

remain on the order of one-half to one day or that other ways should be

considerable improvement

can be effected if some taper

in the illumination is employed

and if the operational require-

ments are sufficiently impor-

tant to justify the added cost

and the decreased efficiency.

Figure 4-14 shows the estimated

costs of antenna systems with

constant gain of 70 and 80 db

versus the occultation time.

It can be seen that for an 80-db

antenna, the occultation time

can be cut from 4 days to l day

by spending about I0 percent

more than the cost of the

arrays with uniform illumina-

tion. This cost increase

corresponds to designing for

first sidelobes which are
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investigated for reducing it. One method that might be worth consid-

ering to avoid occultation during flight is to deliberately fire the probes

into a trajectory that is slightly out of the ecliptic so that conjunction

between the effective diameter of the sun and the probe is avoided.

Because of the significance of the sun as a noise source and

because of the interesting aspects of self-steering antennas, an analysis

was conducted of the effect of the presence of the sun in the pattern of

the subaperture of a large adaptive array. This analysis and the

conclusions drawn are included in Section 4. 5. 5 (Ground-Based
Antennas).

4. 5.4 State of the Antenna Art

Existing and proposed types of antennas that can be considered

for use at the two ends of a deep space communication link are described

in this subsection. A presentation is made of the state-of-the-art

characteristics and performance of several existing antennas and of a

few proposed types. Some of these antennas may have application on

the spacecraft, and others may be more suitable for the requirements

for the ground-based system. Of course, some of the same antenna

technology can be applied at either end with only a modification in

size and mechanical design. It is the intent to delineate the various

antenna types that seem to have some possible application to long range

communication systems whether these antennas have been developed,

are in experimental laboratory form, or are only in the planning stages.

Specific documentation for some of the characteristics stated is thus

vague, since the devices are still being developed, and their expected

ultimate performance is mentioned only for comparison.
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Reflector Antennas. Reflector antennas can be designed in two basic

forms: a front-fed system consisting of a relatively small feed and a

comparatively large reflecting surface (most often paraboloidal) and a

Cassegrain system consisting of a feed, a small convex or concave

secondary reflector, and a much larger concave primary reflector

similar to that of the front-fed system. When maximum antenna gain

is required, the reflector size is chosen to be as large as practical

and the feed is normally designed to illuminate the reflector with an

intensity at the reflector edges that is approximately I0 db below that

at the center. This tapered illumination reduces the sidelobes below

those obtained from a uniformly illuminated aperture and reduces the

energy spilled over the edges. The radiation efficiencies _:_"of these

reflector antennas are typically between 55 percent and 70 percent

depending on their size. Their gain is directly proportional to their

area and to the square of their operating frequency until it is limited

by phase errors across the aperture. Phase errors may be caused

either by a distortion of an incoming wavefront or by physical pertur-

bations in the antenna structure in the form of mechanical deflections

or manufacturing tolerances that create deviations in the reflecting

surface or surfaces. The effects of phase errors are discussed in

Section 4. 5. 2.

Reflector antennas are being employed in various sizes on space

communication programs and on experimental research programs such

as radio astronomy and propagation studies which use the antenna in a

similar manner. The Deep Space Instrumentation Facility (DSIF) is

presently equipped at five stations with 85-foot parabolic reflector

antennas 25 having gains of 53 db at 2. 3 GHz. A system noise tempera-

ture of 55°K is provided at each station. A 210-foot paraboloid 25 is

in operation at the Goldstone, California, GSIF station, and two

additional antennas of this size are planned for other stations. The

':"The radiation efficiency of an antenna is here taken as the ratio

(expressed as a percentage) of the on-axis gain to the gain that would

be provided by a lossless, uniformly illuminated antenna of the same

aperture size and shape.
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expected performance of these 210-foot antennas is presented in Table

4-12. The size and frequency of operation of these antennas was deter-

mined on the basis of an economic evaluation using a level of i0 to 100

watts of available transmitter power in the spacecraft and a booster of
the Saturn class of vehicles.

For space propagation research in the millimeter-wave region,
26

the Aerospace Corporation is using a Cassegrain antenna system.

This reflector antenna consists of a linearly polarized feed, a primary

Azimuth coverage, deg.

Elevation coverage, deg.

Pointing accuracy, deg

Maximum angular rate

azimuth, deg/sec

Maximum angular rate

elevation, deg/sec

Maximum acceleration

azimuth, deg/sec

Maximum acceleration

elevation, deg/sec

Servo bandwidth adjustment,
hz.

Gain at 2300 MHz, db

Beamwidth at Z300 MHz, deg

System temperature, ;:-"OK

Antenna temperature, oK

Reflector diameter, ft

Reflector f/D ratio

+300 (from SE at Goldstone)

5 to 88 (tracking sidereal target)

4. 5 to 90. 5 (final limits)

0. 02 pointing

0. 01 tracking

0. 5 (wind < 30 mph)

0. 5 (wind < 30 mph)

0. Z (wind <_30 mph)

0. Z (wind <_30 mph)

O. Ol.to O. 2

61

=0. 1

23-25

=i0

210

0.4235

;:-'Includesmaser amplifier, receiver, transmission line,

listening feed, and the antenna pointing at a quiet sky.

Table 4-12. Expected performance of Zl0-foot DSIF

altazimuth antenna.
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parabolic reflector with a 15-foot diameter, and a hyperbolic subreflec-

tor. The expected value of the gain at 94 GHz is 70. 5 db which includes

effects of aperture illumination, spillover, blockage, and reflector

contour deviations. The antenna is equatorially mounted and can oper-

ate up to 300 GHz, but initial operation has been restricted to 94 GHz.

A Cassegrain feed system is used primarily because, with the effective

focal point placed near the vertex of the parabola, waveguide losses are

minimized and maintenance and accessibility of the RF equipment in

the feed is simpler. Furthermore, the Cassegrain feed system provides

a lower antenna noise temperature and greater flexibility since the

effective focal point can be relocated by changing the shape of the
subreflector. The radiation from the antenna deviates from that of a

circular aperture because of the blocking effect of the support for the

subreflector and the subreflector itself. This blockage has the effect

of reducing the antenna gain, increasing the beamwidth, and increas-
27 Z8

ing sidelobe level. The computed blocked power, taking into

account a -13. Z db aperture taper, is i. 4 percent by the subreflector

and 5. 39 percent by the effects of the spars and their shadow region.

The 94-GHz characteristics of the antenna are presented in Table 4-13.

Reflector diameter

f/D

Magnification factor

Beamwidth (half-power)

Gain

Aperture efficiency

15 ft (4. 57 m)

0.3

14. 74

2. 8 arc-rain at 70-deg elevation angle.

3. I arc-min at 15-deg elevation angle

(broadening caused by atmospheric

turbulence)

70. 33 db ±0.44 db (1o-), measured at

i. 5-deg elevation angle

53. 6 percent

Table 4-13. Performance of 15-foot Aerospace Corporation

Cassegrain Parabolic Reflector Antenna at 94 GHz.
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In general, spillover, backscattering, and aperture blocking due

to the presence of the feed or subreflector are considerations that will

have to be investigated thoroughly when reflector antennas are consid-

ered for the high-gain end of the deep space communication system.

For a large single reflector, these effects contribute to the noise

temperature of the antenna, since the radiation from the warm earth

couples to the back lobes of the antenna pattern. The study already
cited 25 indicates, however, that the economics of the combination of

spacecraft technology, booster capability, and ground-station size

require the consideration of reflector antennas for the next 10 to 15

years of space exploration. These results could be modified by certain

specified technological changes that may come about during this period.

Present space antennas for deep space communication are typified

by the antenna system of the Mariner IV spacecraft. The salient fea-

ture of this system was that the spacecraft had to be attitude-stabilized

when using its high-gain antenna. The high-gain antenna provided

coverage from approxi_ately 90 days after launch until approximately

20 days after encounter with Mars. The antenna was a 46.0 by 21. 2

inch parabolic reflector that was illuminated by a pair of turnstile

elements. The elements were arranged so that a right-hand circularly

polarized beam was projected with a maximum gain of 23. 5 db (at the

2. Z98 GHz transmitting frequency) andhalf-power beam-widths of

13. 5 ° by 7. 5 o When Mars was encountered, the earth was approxi-

mately 160 million miles away from Mariner IV and subtended an angle

of only 1 second. The beamwidth of the spacecraft transmitting antenna

could be reduced considerably to attain the necessary increase in

antenna gain and still completely cover the earth with its beam. Tighter

attitude stabilization would be required, however, to keep the narrower

beam directed at earth.

The gain of the Mariner IV spacecraft antenna could be increased

with an increase of aperture size. The most evident practical limita-

tion on the size of spacecraft antennas is the size allowable for the

shroud of a particular launching missile. However, inflatable, unfurl-

able, or modularly assembled and electrostatically erected spacecraft
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antennas are possible practical means of circumventing such limita-
tions. Within the present state-of-the-art as reported by several

private communications from organizations engaged in the development
of stowable antenna techniques, a 30 foot to 50 foot diameter reflector

antenna could be assembled in space from modules to operate at Z GHz

to 3 GHz. It is expected that a 50 percent radiation efficiency could be

achieved, with 45 db to 50 db of antenna gain.

Phased Array Antennas. A phased array antenna consists of an array

of radiating elements with either fixed or variable relative phase differ-

ences. Those with fixed relative phase differences, such as the anten-

nas on the Surveyor spacecraft or on advanced fire control and missile

systems, require mechanical pointing. Those with variable relative

phase differences, usually referred to as scanning arrays, require

external controls to properly phase the elements to form a beam in a

desired direction. The controls may be mechanical, electronic, or a

combination of these for either the ground-based or the spacecraft

antennas. However, present technology limits externally controlled

scanning to ground-based antenna systems because of the obvious need

for high reliability in the control system. For spacecraft antenna

systems, the self-steering arrays discussed next seem to offer promise

for the future.

When maximum antenna gain is required, all the elements of a

scanning array are excited by an equal amount, and the relative phase

between elements is adjusted for a beam normal to the plane of the

array. F.fficiencies of phased arrays range from 70 percent to 85 per-

cent excluding losses of the phase shifters. However, as the beam is

scanned away from its broadside position through an angle @, the gain

diminishes as cos@because of the decrease in aperture size projected

in the direction of the beam. In addition, the impedance at the input

terminals of the antenna changes as a function of the scanning angle and

the gain is affected. The degree of mismatch with scan angle is deter-

mined from the shape of the pattern of each element in the array and the
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realizable gain of the antenna at broadside. The element pattern is the

pattern generated by a single element under the influence of mutual

coupling between the elements in the array and is, in turn, a function
of the element spacing and the environment of the element. The gain

behavior with scanning is treated in some detail in the theoretical dis-

cussion of Appendix C. The results given there are particularly

applicable to very large ground-based antennas.
It has been shown29 that matching the elements in the aperture

over a given scan range requires that the shape of the element pattern

must follow a cosine dependence with scan angle. One condition nec-

essary to satisfy this dependence is that the inter-element spacing be

bounded to prevent the formation of grating lobes over the given scan

range. The presence of such a lobe at a given scan angle will produce

a dip in the element pattern in that direction. The magnitude of the dip

can be shown to represent the amount of aperture mismatch of the ele-

ments at the angle at which the dip occurred. To prevent a grating

lobe for a maximum scan angle at 70 degrees, the spacing along each

side of a square lattice of elements should be approximately 0. 51k.

In general, it is difficult to achieve a cosine element pattern over

a wide scan ang'_esuch as ±70 degrees. However, analytical and exper-
imental studies made at Hughes Aircraft Company show that the ele-
ments could be matched to a maximum VSWR of 2. I to i over a +60

degree scan angle. This mismatch represents a drop-off of 0. 6 db

from the ideal cosine element pattern at 60 degrees from broadside.

Self-Steering Arrays. Earlier paragraphs describe some of the more

conventional methods of forming narrow beams. When these conven-

tional antenna techniques are utilized in a high-gain communication

system, certain limitations and difficulties exist. Several methods for

overcoming these will be given in this discussion of self-steering

arrays. Although these array techniques may be applied to both ends

of a long range link, they may be especially useful on board the space

vehicle or when a communication satellite is used as a relay between

the vehicle and the earth station since only a very limited information

bandwidth is necessary for accurate beam pointing.
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On a space vehicle, there is a size limitation that will depend, to

some extent, on the type of antenna structure considered. Although

erectable and unfurlable antennas may present an aperture that is con-

siderably larger than the cross-section of the launch vehicle, tolerances

on phasing may be a problem when large diameter-to-wavelength aper-

tures are used and when conventional feeding and phasing techniques are

employed. Then, the use of high-gain antennas in space and on earth

also introduces a problem of controlling the pointing of the beam. In

conventional antenna systems, pointing may be done either mechanically

or electronically, but a priori pointing information may be required or

some electronic tracking technique (e. g. , monopulse) would be nec-

essary to maintain the correct direction. The conventional electronic

beam-steering techniques usually considered require electronically

controlled variable phase shifters with their associated control elec-

tronics which may become quite complex. Therefore, alternative

approaches to the realization of steerable high-gain antennas and the

concomitant increase in data transmission rates are desirable. In

principle, self-steering antennas automatically adjust the phase across

the aperture to produce a collimated beam. Several recently developed

self-steering antenna techniques will be described that may apply to

deep space probes and that may allow increased data rates and minimize

the problems associated with beam pointing accuracy. The problem

of pointing is important on a long range system because of the large

tinge constant inherent in any pointing correction that is applied at one

end of the link but dependent upon information coming from the other

end.

The class of antenna arrays known as self-steering arrays may
3O

conveniently be divided into three rather broad categories:

• Switched multiple beam antennas (transdirective arrays).

• Arrays that are steered with phase inversion by mixing

(serf-phasing arrays).

• Arrays that are steered by the use of phase-locked loops

{adaptive arrays).
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These three categories are discussed in the following sections in an

effort to delineate the basic principles of their operation and to give

details of the various systems that have been implemented as bread-

board hardware. In the following discussion the latter two categories

are grouped together since they have certain similarities.

Switched Multiple-Beam Antennas. Switched multiple-beam

antennas utilized appropriate switching and control circuits to select

the proper beam on command from a transmitter station or automati-
31, 32

cally when a pilot signal is received. In the latter mode of opera-

tion, the selection is made through the use of logic circuitry that

selects the antenna beam output with the strongest pilot signal and

connects it to a receiver. The signal is then amplified and may be

retransmitted in a second direction. This second direction is selected

by logic circuitry that compares the strength of a pilot signal from that

direction as it appears at the various antenna beam outputs. The trans-

matter is then connected to the beam output that results in transmission

in the desired direction. The implementation of the technique requires

fairly complicated logic and switching circuitry to connect the outputs

corresponding to the proper beams to the receiver or to the trans-

mitter. If continuous beam steering is required, continuously variable

power dividers and additional complicated logic and control circ(litry

are necessary to accomplish the smooth transition from one beam to

the next. The basic characteristics of a breadboard model of a self-

steered, multiple-beam array constructed by the Antenna Department

of the Hughes Aircraft Company, were included in Appendix D of the
33

Interim Report of this study and have since been published. The

model was specifically designed for an orbiting vehicle. The array

was built to provide communications with a station located anywhere

within a 50 ° conical region. The coverage of this region was obtained

using 16 narrow overlapping beams. The retransmitted signal was

continuously transferred from beam to beam as the relative orienta-

tions of the spacecraft and station changed. The control logic circuitry

proved to be quite complicated with over 1000 transistors used.
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Several multiple beam antenna configurations are possible. These

include multiple feed reflectors, various types of lenses, and beam-
30, 32

forming matrices. Reflectors with multiple feeds generally

suffer from spillover or aperture blockage effects. Thin lenses may

also suffer spillover problems unless rather complex feeding techniques

are employed to shape the primary feed patterns. Many reflectors and
lenses also suffer beam deterioration when scanned off-axis. While

spherical or cylindrical Luneberg lenses do not exhibit either spillover

effects or beam degradation with scan angle, systems that utilize

Luneberg lenses require a large volume since their depth (from feed

to aperture) must be essentially equal to or greater than the aperture
itself. Planar arrays using beam-forming matrices overcome the

latter problem to a great extent.

Self-Phased and Adaptive Arrays. Self-phased and adaptive

arrays constitute antenna systems that use the incident RF energy to

phase the elements so that a beam is formed in the direction from which

the energy is received. These arrays are also called self-focusing and

self-phasing antennas. The arrays may be contrasted with the usual

electronically steerable arrays that require external sensors and infor-

mation to do the steering. Here, no external commands are necessary

to adjust the illumination across the aperture since, in principle, the

self-steering array automatically steers the beam in the desired

direction. Thus, the problems associated with pointing a narrow beam

in a specified direction appear to be circumvented. In addition, self-

phased arrays can compensate for atmospheric scintillation effects

which may cause a loss of array gain due to lack of correlation among

the signals at the various elements. An important limitation is set on

the minimum size of each element in an adaptive array of elements:

each element must be large enough so that in conjunction with its

receiver, it will be able to detect and phase lock to the incoming sig-

nal. Once this is achieved, the several elements in the array may be

locked together to realize the gain of the entire array.
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Self-phased arrays may take on a variety of forms, depending on

the type of circuitry used to implement them and on the sophistication

of their operation. In the simplest form these arrays redirect incident

energy back in the direction from which it came. These are termed

retrodirective arrays. In the process, the signal is amplified, and

inforn_ation stored at the array is impressed on the signal before

retransmission. A number of such systems are described by Kummer
3O

and ¥ilieneuve. Perhaps the simplest system of the retrodirective
34

type is the -VanAtta array. In this array opposite elements of a

planar array are interconnected through equal length lines to achieve

the retrodirective function. Figure 4-15 illustrates the interconnections

for a linear array. This type of array may be active or passive. By
inserting amplification in the transmission lines between pairs of ele-

35
ments, the system becomes an active system.

Some more general types of self-phasing arrays have been pro-

posed by a number of workers. A number of physical embodiments

34
Figure 4-15. Van Atta array.
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36 37
may be realized; the techniques of Rutz-Philip, Sichelstiel et al.,
Cutler et al. , 38 and Pon39 are sketched in Figure 4-16. The principle

of operation of all the systems shown in the figure is essentially the
same. The phase of the signal incident at each element is reversed by

the electronic circuitry. This is just the condition required to steer a
beam in the direction of the incident radiation. The signals at various

points in the system are shown on the diagrams of Figure 4-16.
In addition to the arrays discussed above which send energy back

in the direction of an incident pilot signal, there are systems which

automatically receive information from the direction of an incident

signal with full array gain. They may also radiate different informa-
tion back in the same direction, or in more advanced systems, in some

other direction dictated by a pilot signal. Electronic techniques similar

to those already mentioned or adaptive techniques may be used. Adapt-

ive techniques utilize phase-locked loops to accomplish the required

antenna phasing rather than phase inversion by mixing. Figures 4-17a
and 4-17b illustrate techniques, using only mixing, that form a receiv-

ing beam as well as a retransmitting beam. Figure 4-17a shows a
retrodirective system and Figure 4-17b a redirective system.

Phase-locked loops have been finding increasing application in

recent years as phase synchronizing devices for an arbitrary distribu-

tion of radiating elements. An array of elements employing this type

of phase control is called an electronically adaptive antenna system. A

receiving antenna system of this type, unlike passive arrays, contains
active elements that automatically adjust the electrical phases of the

signals received by the array elements to obtain antenna directivity.
These arrays can be made retrodirective. A configuration of this type

is illustrated in Figure 4-18.
The characteristics of phase-locked loops are well documented

and, though their construction is more complex than that of the mixers

and filters required for the phase inversion systems, the performance

of systems using them may be greatly superior to the performance of
the simpler phase-inversion systems. This comparison is especially

true when the individual modules are operating at low signal-to-noise
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ratios. Because of this prospect of better performance and from a

purely technical point of view, the system using phase-locked loops

appears the more desirable for reception. However, from an economic

point of view it might be more advantageous to put additional power into

the signal transmitted from earth and to use the simpler phase-inversion

scheme than to use the more complicated phase-locked receiving sys-

tem on the spacecraft. A careful comparison of relative performance

versus cost is required to determine to what extent such a tradeoff

might be desirable, or if it is even reasonable, for the distances

involved in interplanetary missions.

The same techniques that give beam steering on reception also

provide the beam steering for the retransmission process. The system
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that uses phase inversion by mixing translates the received pilot signal

in frequency and retransmits it. Since there is receiver noise super-

imposed on the received pilot signal, the bandwidth of the filters used

in the retransmission process will determine the relative magnitudes

of the retransmitted pilot signal and this receiver noise. Unless adapt-

ive filters which can have very narrow noise bandwidths are used, the

noise relative to the retransmitted pilot signal can be appreciable when

the incident pilot signal level is small. For the system that uses

phase-locked loops, there is essentially no additive noise on the

retransmitted signal, but there is phase noise that is introduced by the

jitter in the voltage-controlled oscillators of the phase-locked loops.

When the loops are operating properly, however, the phase noise can

be expected to be small. Experience with probes such as Mariner IV

indicate that the phase noise on a single channel is acceptable, at

least for the bit rates used (about 8-1/3 bits per second at Earth-Mars

distances).

A much greater bit rate (10 6 per second) is considered in the

present study. It should be pointed out, however, that the high bit

rate will probably not be required on the earth-to-spacecraft link

(up-link) in, mediately, since probably only commands would be trans-

mitted on this link. The spacecraft-to-earth link would require the

high-bit rate. Therefore, in the immediate future, the up-link bit

rate may not be greatly different than those of previously employed

systems. Manned missions would require considerably increased

up-link data rates; and if a communication up-link using television

bandwidths were required, then 10 6 bits per second on the up-link

would be a minimal requirement.

The type of coding and modulation-demodulation system employed

in the communications has an effect on the reliability of received

messages. A study of the effects on error probabilities of using self-

phasing and adaptive arrays is presently underway on Contract NAS

2-3297. In this study probabilities of errors are being determined

;:_Study of Applications of Retrodirective and Self-Adaptive

Electromagnetic Phase Controls to a Mars Probe.
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for adaptive arrays that use PSK, DPSK, FSK (coherent and incoherent),

and ASK (coherent and incoherent) modulation. The analysis includes

the effects of additive receiver noise and of phase errors introduced by
imperfect phase tracking of the phase-locked loops. The results of

these studies, when completed, should be applied to the mission of

interest in this study. The studies do not include the effects of fading
and multipath on the probability of error. These effects should be

investigated since in the near neighborhood of planets, the interference

between the direct signal and reflections from planetary surfaces can

have adverse effects on the correct decision in determining which of
the incoming signals is being received at any instant of time. A method

must be found to sort out these signals so that the equivalent of the sig-
nal coming via the direct path is processed.

Experimental Systems. A number of experimental models have been

built that demonstrate self-steering techniques. Several significant

examples are given in the following paragraphs. The listing of exam-
4O

ples, however, is not exhaustive.

Van Atta Arrays. An experimental model of the Van Atta type
41

using two arrays has been built and tested, but the arrays were not

scaled in size to offset the effect of frequency shift. The model

(Figure 4-19) uses two interleaved arrays of orthogonally oriented

printed dipoles and employs tunnel-diode amplifiers and mixers. The

orthogonal orientation of the elements in the two arrays provides iso-

lation between received and retransmitted signals. In this system,

the information signal, which has been obtained from some other

source, is impressed on the reradiated signal by introducing it on the

local oscillator signal at frequency _f. The experimental array has

nine active elements and operates at a nominal receiving frequency of

2. 0 GHz and transmitting frequency of 2. 15 GHz. The r-f bandwidth

is approximately 120 MHz, and the measured array gain is reported

to be 14 db. The array was operated under conditions of both single

and _uultiple access.
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A second experimental

version of the Van Atta

array has been described

briefly by Gruenberg and
4Z

Johnson. It consists of a

25-element Van Atta array

in which 24 conjugate ele-

ments are pulse-code modu-

lated by on-off switches.

The switching modulates the

reradiated signal. The

modulation comes from the

decoded signal received by

the 25th (center) element. This receiving element accepts the modu-

lated signal from a distant transmitter. A separate receiving station

then beams an unmodulated signal to the array. This signal is modu-

lated by the array switches and directed back to the receiving station.

A diagram of the system is illustrated in Figure 4-Z0. No experimental

results were given in the reference.
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Figure 4-20. Modulated Van ALia array.
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Multiple Beam Antennas. A multiple-beam antenna system that

implemented a Transdirective self-steering concept was designed and

built in a breadboard model by the Hughes Aircraft Company Antenna

Department on Contract NAS 5-3545. The system had two 4-by-4

arrays of helical elements, and two separate RF sections, one for

transmitting and one for receiving. Similarly, there were two matrices

for the formation of the multiple beams. A detailed discussion of the

operation of this type of self-steering system and a performance evalua-

tion is available in Reference 33.

37
Phase Inversion by Mixing. Sichelstiel et al. have described a

retrodirective linear array operating at X-band (Figure 4-16b). The

array consists of 25 horn radiators arranged horizontally. Much of

the RF circuitry is waveguide. The 10. 7 MHz IF contains a crystal

filter to eliminate unwanted frequencies. The incident RF frequency

was 9. 345 GHz and the retransmitted frequency was 9. 385 GHz. A

number of radiation patterns were shown for 50-wavelength and 100-

wavelength arrays. The patterns were taken with the source of inci-

dent radiation at different ranges and at on-axis and off-axis positions.

The focusing properties were illustrated when a dielectric sheet was

partially interposed between the source and the array. The operation

for extended sources was also investigated.

A second experinnental retrodirective array is described by
39

C. Y. Pon, Figure 4-16c. This array consists of 4 slot-fed dipoles,

each with a duplexer and a balanced mixer. The mixers are in wave-

guide and coaxial line while the duplexer is in stripline. The incident

frequency was 2. 95 GHz, the local oscillator frequency was 5. 75 GHz,

and the reradiated frequency was Z. 80 GHz. Experimental patterns

are presented in the paper for several angles of incidence of the signal.

The element spacings were such that grating lobes were present in all

patterns.

One applicable redirective beam-steering technique forms high-

gain beams from an array of elements for a transmitting mode and uses

high-gain beams from another antenna for a receiving mode. An
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engineering model of a self-steering microwave transponder imple-

menting this concept is being designed, constructed, and evaluated at

the Hughes Aircraft Company. A discussion of this system is given in

Appendix D.

Experimental Phase-Locked Loop Array. An eight-channel

antenna array utilizing phase-locked loop principles has been simu-
43

fated. A block diagram of the simulator is shown in Figure 4-ZI.

The signal picked up by the individual antennas was simulated by a

l-Khz sinusoid, and the zero-voltage voltage-controlled oscillator

(VCO) frequencies were approximately 1300 Hz, giving an IF frequency

of 300 Hz. The phase shifts in each antenna were simulated by resolver

phase shifters. To measure the system adaptiveness, the acquisition

time as a function of signal level was measured (Figure 4-Z2). The

noise bandwidth of the loop was 3. Z Hz, the damping constant was
-I

equal to 2, and the so called open-loop gain was I_ --2260 sec The

sum signal was held constant as the input signal was changed.

It was found that the acquisition time decreased as the signal

strength increased, thus indicating an increase in the noise bandwidth.

Oscillograms of the VCO phase jitter (Figure 4-23) also indicated an

increase in the noise bandwidth with signal strength by the presence

of higher frequency components in the oscillograms for large signal

strength.

Conclusions. Of the general types of antennas discussed, only the

reflector and feed antenna has been treated as a presently available

device. The theoretical and experimental performance characteristics

of this type of antenna are available, and it has been used extensively

for various applications including long range communications. The

phased array and the self-steering array, on the other hand, represent

relatively new techniques, and their applicability to space communica-

tion requires more study. Several versions of these two antennas have

been studied experimentally in the laboratory by different groups of

investigators, but the efficiency and reliability of the antennas in a

space environment or as part of a large ground system has not been
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thoroughly evaluated. The increased flexibility of operation offered,

however, indicates that phased-array techniques merit further devel-

opment, particularly in relation to deep space communication

applications.

4. 5. 5 Ground-Based Antennas

General. From the discussion of system performance in Section 3.2,

it is apparent that one of the promising frequencies of operation is in

the microwave region and probably in the S-band. In subsection 4. 5. I,

the discussion points out that at Z. 3 GHz dimensions on the order of

600 to i000 feet or more are probably realistic sizes to consider for

the requirements imposed by the high data rate needed for a deep space

communication system. Various possible antenna types are discussed

in 4. 5.4. Consideration of the practical difficulties that have been

encountered in the development of reflector antennas of this size - as

at Sugarloaf, West Virginia, and at Arecibo, Puerto Rico - tend to

limit the choice to SO_Tle type of distributed aperture and possibly to a

phased array. This selection merits further consideration, based on

investigations of the available and potential technology of the necessary

components, as a function of the aperture size and type of elements.

The array size and the requisite number and kinds of components must

be optimized in relation to the losses associated with the transmission

lines and the effective antenna noise temperature.

Scanning arrays consisting of a large number of elements,

usually paraboloids, dipoles, or spirals, have been used for radio

astronomy. At the 1965 AIAA meeting in San Francisco, California,

it was proposed that 10, 000 reflector antennas, each 100 feet in diam-

eter, be used to cover an aperture of six miles in diameter for a radio

telescope. The JPL study 10 points out that an array (about 10 elements)

of 210-foot antennas could be considered economically feasible for very
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deep space communication systems with the advent of Nova boosters or

multiple-rendezvous Saturns and spacecraft transmitter power in the

range of 100 w to 1 Kw.

In one possible implementation of such a large array, it could be

subdivided into subarrays of, say, 100 feet by 100 feet. These sub-

arrays would then be elements of the array that could be scanned

electronically or mechanically or by a combination of the two methods

to optimize the gain as a function of scan angle. The subarrays could

be made up of individually discrete radiators or of continuous apertures

as has been suggested for the radio telescope. Further investigations

must be made to determine the optimum combination of the element

factors and the proper array factor that will prevent grating lobes from

appearing within the required angular scan range. In addition, a

detailed study of the components associated with feeding each subarray

and the basic radiators must follow to arrive at a set of feasible trade-

offs that may be made between the element and the array characteris-

tics for various possible operating frequencies.

Self-steering techniques as described in Section 4. 5.4 appear to

hold some promise for the highly directive ground-based antenna that

must respond to the relatively weak signals from a distant spacecraft.

These techniques, in principle, can alleviate the pointing difficulties of

high-gain antennas. It should be observed that only a very narrow

information bandwidth is required for pointing accuracy. This low data

rate requirement for beam pointing is an especially significant factor

in determination of the size of the subarrays in a large ground-based

system. Further specific study is needed to determine the amount of

self-steering that can be accomplished and the associated cost in

component complexity. In addition, such techniques are desirable for

practical construction of electrically large arrays at the microwave

region. At these frequencies, manufacturing tolerances and atmos-

pheric scintillation effects may cause a deterioration of the antenna's

characteristics due to the decorrelation of the signals at the various
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elements. Again, in principle, a self-steering array should automati-

cally correct for these effects and allow the maximum amount of the

full gain of the array aperture to be realized. The details of these

techniques and their developmental progress to date have been dis-

cussed in 4. 5. 4. Questions about their reliability and ultimate accu-

racy still remain to be answered by more intensive research and

development.

Implementation of the possible antenna techniques and the opti-

mum choice of antenna type are both contingent upon the practical solu-

tion of several problems of varying degrees of technical complexity.

In the discussion of Section 4. 5. 3 and Appendix A, on the subject of

noise due to the presence of the sun in the sidelobes, the duration of

the period during which communication may be lost is related to the

level of the sidelobes of the antenna pattern. The computations pre-

sented were made on the basis of a continuous aperture illumination.

In any array of mechanically positioned subapertures, the aperture

distribution will be discontinuous, with the appearance of grating lobes

as a consequence. This problem is treated briefly in a following sub-

section. It must be recognized that, although the emphasis therein is

with respect to n_echanically pointed subsections of the aperture, the

problem of grating lobes is not a trivial one with electronically scanned

arrays. Such lobes occur whenever there is any significant discontinuity

in the phase or amplitude of the aperture illumination.

Another question of interest is the determination of the appro-

priate size of the subaperture of a large array. In addition to the

matter of cost touched upon in Section 4. 5. 3, other factors can be

significant in bounding the subaperture size. A strong noise source

may be present in the pattern of the subaperture alone at greater angles

off the axis of the main beam of the whole array than for the main beam

itself. The effect on the overall antenna temperature of the presence
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of the sun in the subaperture pattern has been analyzed in part for an

adaptive array and the analysis is presented below. A numerical exam-

ple is given and the results tend to show that the presence of sun in the

subaperture pattern does not preclude the use of this kind of antenna.

When an array becomes sufficiently large, differences in propa-

gation time of the incoming signal between one side of the array and

the other can become significant relative to the time involved in changes

in the modulation that conveys the desired information. Time delay
compensation becomes necessary, although the type of compensation

depends on the details of array implementation. The relative time

delays that are permissible across portions of the overall array may

set an upper limit on the subaperture size. Consideration is given to
time-delay compensation in a third subsection below. A discussion as

to the appropriate subaperture size is then given with a tentative choice

indicated in a fourth subsection. A discussion of distribution systems
and phase shifters that make up types of subapertures and an indication

as to the most promising kind completes the examination of ground-
based antennas.

Grating Lobes in Large Arrays. The formation of grating lobes in

large array of parabolic reflectors constitutes a serious difficulty for

which no generally satisfactory solution has yet been developed. The

problem can be visualized if the array pattern is considered as the

product of an element pattern and an array factor. The element pattern

consists of the radiation pattern produced by a parabolic reflector,

while the array factor is the pattern of an array of isotropic radiators

and is a two-dimensional grating lobe pattern. It is steered electroni-

cally while the element pattern is directed by the mechanical movement

of the individual dishes. In the ideal case the element pattern and a

single lobe of the array factor will both point in the desired direction.

Multiple beams appear, however, when more than one grating lobe falls
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within the main beam of the element factor; this condition occurs when

the array spacing is substantially greater than the diameter of the sub-

apertures.

In illustration, a square array of 14 elements on a side is consid-

ered. Each element is a parabolic reflector antenna I00 feet in diam-

eter with a 26-db Taylor amplitude distribution. The spacing between

reflector centers is 150 feet; this distance permits scanning to 48

degrees from broadside without interference between adjacent array

elements. The layout of elements is illustrated in Figure 4-24. The

radiation pattern of the array is given by
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Figure 4-24. Layout of array elements.
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where P (e_5) is the array factor and i_ (e¢) is the element factor.
a

The element factor is, of course, the pattern produced by the reflec-

tor, and because the reflector is mechanically steered, it has the same

shape for any pointing angle. The array factor is of the form,

sl (sin 0 cos sin (sinO sinP (o,I -- .----c 2
7ra

wa 8) J sin ---_(sin 0 sina L sin --_-(sin 0 cos

where N --the number elements on a side

k

Ol

a

= wavelength

= phase delay between elements in the ¢ = 0 plane

= phase delay between elements in the 0 = 0 plane

= element spacing

The array factor is steered by changes in _ and _ which are the pro-

gressive phase shifts between elements in orthogonal planes.

It can be seen from this equation that the beamwidth of the array

factor, which is essentially identical to the beamwidth of the array,

increases as the beam is scanned from the broadside position. How-

ever, the gain of the system does not decrease as might be expected

because the relative amplitude of the grating lobes decreases as the

beamwidth increased. This tradeoff only occurs for pointing angles

small enough so that one reflector does not block another.

The element and array factors for the broadside beam position

are sketched in Figure 4-25 and the overall array pattern is shown in

Figure 4-26. The patterns presented show only the two principal

planes; a three-dimensional view is given in Figure 4-27. It may be

seen that at least eight significant grating lobes are present in the

pattern produced by the array of Figure 4-24. These lobes have an

amplitude on the order of 4 db below the main beam and, in the two

principal planes, are located approximately 0. 163 degree away from

the main beam. If the array is scanned away from broadside in one of

(13)
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Figure 4-25. Element and array factors for the array of Figure 4-24.
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Figure 4-26. Radiation pattern for the array of Figure 4-24.

the principal planes, two effects will be observed in that plane. First,

the angular separation of the grating lobes from the main beam will

increase inversely with the cosine of the scan angle, and second, the

amplitude of the grating lobes will decrease. These effects are noted

because as the array factor is scanned, the lobe separation increases

as a result of the decrease in the effective or predicted separation of

the elements. The element factor beamwidth, however, is invariant

with scan angle and, consequently, the grating lobes move farther out

along the element pattern with a corresponding decrease in amplitude

compared with the principal or main beam.
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Figure 4-27. Three-dimensional plot of principal grating

lobes surrounding the main beam.

Each grating lobe is accompanied by a sidelobe structure which

is determined by the amplitude weighting applied to the array. For the

example given, in which a uniform distribution is assumed, the side-

lobes follow a sin_____Xdistribution with the first sidelobe at the usual
X

13 db level. In practice, the sidelobe structure around each grating

lobe can be reduced by application of any of the standard amplitude

tapers used in the achievement of low sidelobe levels.

The grating lobes are only objectionable when communication is

desired with a vehicle that is nearly eclipsed by a noise source, such

as the sun. In this case one of the grating lobes on the beam side

nearest the noise source can probably be pointed at the vehicle. The

effective gain will, of course, be somewhat reduced, but at least, a

situation in which one of the stronger grating lobes points directly at

the noise source will be avoided.
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The spacing of the grating lobes from the main beam can be

increased by a decrease in the separation of the parabolic reflector

antenna elements. However, if this spacing is decreased, the diameter

of the reflectors must also be decreased so that the effective scan range

can be maintained, while at the same time more array elements must

be added to meet the gain requirement. The end result will be a

broader element pattern which in turn will ensure that the grating lobes

will have essentially the same amplitude relative to the main beam.
The beamwidth of both the main beam and the grating lobes will, for all

practical purposes, ren_ain the same as long as the overall array
dimensions remain unaltered. The fine grain structure around the

various lobes will change, however, as more elements are added.

If the spacing between the elements is increased, and the diam-
eter of the reflectors is increased correspondingly, the grating lobes

will be moved in closer to the principal beam. Once again the relative

amplitude and beamwidth of all the grating lobes should remain

essentially constant.
A possibility exists that the grating lobes adjacent to the principal

beam may be reduced in amplitude by the use of random spacing among

the array elements. However, it is anticipated that the selection of

such a designwill prove to be an extremely difficult problem. Intuition

suggests that, at best, a few large grating lobes may be exchanged for

a relatively large number of moderately sized lobes. In addition, it is

quite likely that the obtaining of any real improvement over more than

a limited range of scan angles would not be feasible. One problem

which arises, for example, in a phased array of unevenly spaced

elements, is that the phase distributions in the two principal planes are

no longer separable or independent functions. Therefore scanning in

one plane may affect the amplitude and position of the grating lobes in

the other plane.
Another means of suppressing the grating lobes might involve the

use of an auxiliary array that could be steered and phased to cancel out

any given lobe. A nqajor difficulty that might be anticipated from such

a scheme would be the obtaining of sufficient gain from the auxiliary

array.
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Temperature of Adaptive Arrays Due to the Sun. The problem of

concern is whether the effect of the noise generated by the sun, and

appearing at the output of a subaperture of a large adaptive array,

significantly degrades the operation of the adaptive array when its beam

is pointing near the sun.

Since the large aperture is composed of subapertures that are

phased together by means of phase-locked loops located at each sub-

array, the sun will affect the subaperture temperature differently than

the temperature of the total antenna. As the subapertures are scanned

near the sun, their temperatures will rise and the signal-to-noise ratio

in the tracking loops will decrease. As this ratio decreases, the phase

errors of the individual subaperture signals will increase.

Since the noise due to the sun at the different subapertures comes

from a common source, there will be some correlation among these

noises. If the noise was correlated at the elements and if the phase-

locked loops were all identical, the phase errors introduced by the

noise in each phase-locked loop would be a predictable function of the

position of the associated element in the array and of the angular posi-

tions of the signal and noise sources. It appears that under most

circumstances the aggregate effect of the errors in the loops on the

errors in the communication channel is much like that of the case in

which the noise is uncorrelated. Special conditions need to be investi-

gated to determine worst case performance.

In the case in which there is negligible correlation among the

noises in the individual tracking loops, the overall array pattern would

be degraded somewhat, and as the beam approaches the sun, the effec-

tive noise temperature of the total array would increase more rapidly

than it would if the phasing were insensitive to the subaperture noise

temperature. To determine how the subaperture noise temperature

affects the total array temperature, an analysis must be made of the

phase errors in the tracking loop as a function of the signal-to-noise

ratio in that loop. Then the phase error must be related to the noise

temperature of the array. Such an analysis allows a determination of

the least distance to the sun at which a spacecraft can be viewed.

4-77



An analysis of the type considered, in which the correlation of

the noises is accounted for, has not yet been carried out. However, an

analysis was made that assumes statistical independence of the noise,

and hence, of the phase errors, from subaperture to subaperture.

This assumption should lead to somewhat optimistic results as com-

pared with the case in which the noise is perfectly correlated.

An____alysis.The satisfactory operation of the communication
channel will require the maintenance of a minimum operating value of

energy per bit, E, to noise spectral density, ZNo, for an acceptable

probability of error. If the value of E/(ZN o) falls below this value by
more than a prescribed margin, the communication channel will no

longer operate satisfactorily.
When the antenna beam is not directed near the sun, the contri-

bution of the sun to the noise temperature of the antenna may be

neglected in comparison with the temperature of the rest of the system,

T r. Under these conditions, the system will operate with a prescribed

value of signal-to-noise ratio, (E/ZNo) o, where

where

P
O

T b

k

E = lmo Tb (14a)

2N = k T (14b)
O r

= the average power received in the communication signal

-- the bit duration

-- Boltzmann's constant

T = system temperaturer

Now, a is the ratio of PT' the power in the tracking signal, to Po' and

B_ is the tracking loop bandwidth. Then, the normal operating signal-

to-noise ratio in the tracking loops at the individual elements may be

written
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(15)

where q is the array aperture efficiency and M is the number of

subapertures.

This signal-to-noise ratio in the tracking loop controls the phase

error of the individual subaperture. It has been shown 44 that for loop

signal-to-noise ratios greater than about 9 db, the mean squared phase

error in the loop is just the reciprocal of the loop signal-to-noise ratio

when the loop is a proportional-plus-integral control loop. It has also
44

been shown that the probability density function of the phase errors

is approximately Gaussian for high signal-to-noise ratios.

Thus

, (:)P(@ )= _o- exp EZ (16a)

where

(16b)

When the array is steered toward the sun, the noise temperature

of the subapertures will rise because of the contribution from the sun,

T e The system temperature at the subaperture then becomeses
T +T e and the loop signal-to-noise ratio may be written asr es'

= T + T e
r es

(17)

and as a result of the reduced signal-to-noise ration the rms phase

errors at the subapertures increase. Consequently, the total aperture

gain will be reduced, and the pattern sidelobe levelwill increase. The

increased sidelobe level will result in an increase in the total array
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effective noise temperature due to the sun, T a. These quantities can
es

be evaluated in a straightforward manner for the mean power pattern

when independent gaussian amplitude and phase errors are assumed.

Gain of Mean Power Pattern. fin expression for the gain of the

mean power pattern is derived first. The excitation coefficients of a

two-dimensional rectangular array of M identical elements are denoted

as A In general there will be amplitude errors A and phase
mn" mn

errors _mn. The field pattern of the array may be written as

E = f(U-Uo' V-Vo)EE Amn (1 + Amn )exp(jk[m(U-Uo) + n(v-v )])o

IT1 n

exp (jq_mn)

where

C18)

f = the element pattern normalized to unity at its peak

u = sin 0 cos _b

v = sin e sin qb

The power pattern is then proportional to EE*. If the amplitude and

phase errors are assumed to be independent gaussian random variables
2

with variances A 2 and _ , respectively, then the mean power pattern

may be computed in a straightforward manner to be

I 12P(u-u o, v-v o) = Po(U-Uo, v-v o) exp(-o -z) + f(u-u o, v-v o)

The gain of this mean pattern is given by

4TrP
G =

ffP du dv
v,

(19}

(Z0)
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For narrow beam antennas near broadside, Equation (20) becomes

4rrPG = (21)

/fP du dv

When Equation (19) is substituted into Equation (21) and the integration

is carried out, the following expression for gain results.

4_ A 2
G---n 7- exp (- )

n

t,+_1[oxp,_2,(1+_2,_1]t
[1+_]

(22)

In the derivation of Equation (22), it has been assumed that the array

subapertures are uniformly illuminated and use has been made of the

relation

P (o, o)
O

_l_moI_-=_
where q is the aperture efficiency of the array excitation and M is the

number of elements.

Temperature of Array in Terms of Element Temperatures. The

effective noise temperature of an antenna is given by

T _ 1 //T G(u, v)
e 4w

du dv

V 2 2.l-u -v

(23)

where T is the temperature of the observed sources. When the

expression of Equation (22) is employed in Equation (23) and the various

terms identified, the effective array temperature is shown to be

T a + g --2 3ii + A_ _ exp (_oZ)IT e
a eso 1.3 es

T = (24)
es

1 +A 2
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where the effective array temperature in the absence of excitation
a

errors, Zeso, is

5//eso -- G

° V Z Z
1-u -v

(25)

T Po(U - Uo, v - vo) du dv

V Z 2Po(0, 0) I - u - v

e

and the effective subaperture temperature, Tes, is

e A If(u-Uo' v-Vo)[ Z dudv

es kZ _ V Z ZIV[ I -u -v

(Z6)

It can be seen that in the absence of errors,

when mean square errors are appreciable,

Te a equals T a but thats eso

T a approaches T e
es es"

Numerical Example. As an illustration of the analysis, the

following system is considered. The antenna is assumed to have a

square aperture Z000 feet on a side, composed of 400 contiguous, square

subapertures I00 feet on a side. Frequency of operation is Z.3 GHz.

The required operating communication signal-to-noise ratio, (E/2No) o,

is assumed to be i0 db. The bit rate is 106 bits per second, i.e.,

T b -- 10 -6 second, and the loop noise bandwidth, B_, is assumed to be

i0 cycles per second. The value of _ is taken to be 0. 10. It can be

found that

_Z I T +T e )
= 0.263 x 10 -2 r es (27)

T r

e and T a are required
To complete the analysis, the values of Tes eso

as a function of pointing direction relative to the sun. The pattern of

uniformly illuminated square aperture of side V_ is given by

r-'---
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[ 12[ 12G - 4_r A sin-_ A (u - u ) sin-_ (v - Vo) (28)

k2. M o Z 2

For the antenna considered, = i00 feet and -_

The temperature due to the sun was evaluated on a GE-2.65 time sharing

computer as a function of angular separation between the element

pattern peak and the edge of the sun. The frequency considered was

2.3 GHz. The resulting curves of temperature versus angular

separation are shown in Figure 4-2.8.

I0,000

lOOO

i

i

lOO

T a

eso

\

T e _EFFECTIVESUBAPERTURETEMPERATURE
es

T a =APERTURETEMPERATUREIN ABSENCEOF
e_,o

!
I

PHASEERRORS

1
o O.lO 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

ANGULARDIFFERENCEBETWEENPOINTINGDIRECTIONANDEDGEOFSUN,DEGREES

Figure 4-2.8. Effective temperatures without errors.
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For the calculation of the array temperature, it was assumed

that the subapertures were uniformly illuminated in amplitude and were

phased to point in the desired direction. A cosine taper in both planes

was assumed for the overall aperture, and 25 degrees Kelvin was

assumed as a normal receiver temperature. The aperture distribution

of the array was taken to have the form

F (x,y)= cos (_V_- x) cos (_v_ y) (z9)

in which the effects of the illumination discontinuities at the subaperture

edges have been neglected.

The corresponding gain function for the array is then

G(u- u , v- v )=n
o o

8
4_A

2 6 Zk 1

I 12cos _v_ (u-u)
k o

_ _x/A 2 2(T' (U-Uo' l

cos _v_- (v ] ZX - Vo)

_)Z _L___ z _v)Zl(-f - ( ) (v o

(30)

where

n = 0. 656

¢X
- 4673

k

The numerical evaluation of the temperature integral over the sun for

this size array would take a prohibitive time on the GE time-sharing

computer, so the integral was evaluated analytically by approximating

the sun bya circumscribed square. Thus the temperature computed

by this method is slightly higher than the true value. The integration

for the temperature yields the following result

3

T a < T (0 656) _ ii (_ _ (31)es s ' 128 I' 2 )
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where

zI (AI, AZ): { I i si (_i+_) + 1 - cos (_I+ _)
(AX (AX A

x 1Z + _) 2 - _) + _T

+z____ si (_i
x Z

where

-=)+
1 - cos (:i I - _)

(Az - _)
(3z)

x

sin t dt (33)Si (x) - t

0

x

[ (i t)COS

Cin (x) _-] dt (34)
J t
0

A Z_%_

Xl -- k (Ul - UO)

A Z IT _--A

x2 --- k (u2 - u ° )

where u Z -- sin 0.25 ° = -u I = 0. 00436

The upper bound on T a given by Equation (31) is plotted in Figure 4-Z8.
es

When the calculated temperatures are put into Equations (Z4) and

(Z7), the curves shown in Figure 4-Z9 are obtained. Here, the effective

array temperature, T aes' is plotted as a function of the angular sepa-

ration between antenna pointing direction and edge of the sun for zero

amplitude errors and for rms amplitude errors of 0. i0 and 0. Z0 db.

It is evident that over the range shown, the zero error array tempera-

ture contributes a negligible amount to the effective temperature; and

that for the cases shown, the array cannot be steered closer than one

sun diameter from the edge of the sun, if the increase in temperature

due to the sun is not to exceed Z5°K.
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Figure 4-29. Effective temperatures with errors.

As stated in Equation (ZZ), the gain of the array is also decreased

so that the signal-to-noise ratio in the communication channel is

further decreased. For the case considered, the effective reduction in

array mean gain was also computed as the array was steered near the

sun. The change in gain was found to be much less serious than the

increase in noise temperature (see Figure 4-30). It was also found

that maximum reduction in gain of the mean pattern is about 0.4 db for

the Z5°K temperature rise considered. This value of gain reduction

includes the effects of a 0. Z0 db rms amplitude error. For zero

amplitude errors, the gain reduction was about 0. Z5 db at the same

pointing angle.
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Figure 4-30. Gain reduction.

Summary. The effect on antenna noise temperature of steering

an adaptive array near the sun has been considered. The analysis has

been carried out under the assumption that the noise due to the sun in

the phase-locked loops is statistically independent although in actual

practice there will be some correlation from element to element. To

assess the effect of the sun noise accurately, the cross-correlation

of the noise from element to element should be taken into account.

The results presented here, and based on an assumption of independent

noise tend to be optimistic.

Phase and Time Delay Compensation for Large Arrays. In the design

of a very large ground antenna array for the reception of high-bit-rate

data from a distant space vehicle, provision must be made for the
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summation of signals from the various portions of the array. It is

essential that the signals received from the various elements or sub-

apertures of the total array be added with proper regard to RF phase

if the desired gain and pattern are to be achieved. Moreover, such

addition with regard to phase must be performed even though the

aperture may be of such large extent that the incident wavefront can no

longer be regarded as plane. Atmospheric turbulence and other

inhomogeneities may be sufficient to produce a departure from a planar

wavefront by an amount that is not small compared with the wavelength.

A second problem, that of time delay compensation, is distinct from

the RF phasing problem in that such compensation requires a true time

delay correction rather than a phasing correction.

An array of n elements or subapertures is represented schemat-

ically in Figure 4-31, and a planar wavefront is indicated as being

incident on the array. The plane of the wavefront is taken as being

at an angle 8 with respect to the plane of the aperture. The signals

  %STEERS ±

I i
;A

WAVE FRON_

(SUBAPERIURES)

I L ,z

SUMMATION

POINT FOR

SIGNAL OUTPUT

Figure 4-31. Large array schematic.
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received at the n subapertures are presumed to be added at the point A

to provide the output signal. In order that the maximum output signal

and the maximum antenna gain be achieved at a single frequency, the

RF phases from the various portions of the total aperture must be

adjusted in the phase shifters Pl "''Pn" If the phase of the signal at
element number I is taken as the reference phase, then the phase delay

in the arrival of the signal at element n will be

2rrX
n

n X (35a)
o

or

2rrf _sin@
2rr_ sin@ o

= = (35b)_n X c
o

wh e r e

= the distance across the array between phase centers of

elements I and n

X = the wavelength corresponding to a particular single
o

frequency, and

c --the velocity of propagation

At a single frequency this phase delay can be introduced, modulo

2 It, at phase shifter Pl to provide a signal maximum at the output.

The phase shift introduced is then

2rT£
Cn' - X sin @ - 2 m rr (36)

where

0<_n<277

m = O, 1, 2, .............
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If the phase adjustments are made without concern for integral

multiples of 2Trradians, the total range of phase adjustment needed in

the phase shifters is restricted to 2Tr radians or 360 degrees. Errors

in the phase compensation will occur, however, that limit the band-

width. At a frequency removed from f by an amountAf, the phase
o

shift introduced is

2Tr (f + Af) _ sin@

+_Op = o (36)
n n c

or

Aqbn = 2Tr A f_ sin 8 (37)
C

If a limitation in allowable phase error across the array of 2_ radians

is assigned, the bandwidth becomes

Af - c 1
(38)

sin@

This expression provides a rule of thumb: for a large pointing angle,

O, the bandwidth of the array is limited to c/_, unless real time delays

corresponding to multiples 2Tr can be introduced.

The significance of the bandwidth limitation can be seen in the

following way. If there is any difference in the times at which a signal

is received at two places on the array and if the signals received at

these two points are brought together by means of a suitable trans-

mission line, the carrier phases at the transmission line outputs can

be brought into coincidence by shifting the phase of one of the received

carriers by a suitable amount, modulo 2w. It can then be supposed that

the received signal is modulated and that the net differential time

delay between the two signals, as seen at the outputs of the transmission

lines, is on the order of a microsecond. If the reciprocal of the modu-

lation bandwidth is small relative with this differential delay, the modu-

lation output of the one transmission line at a given time will, in general,

have no relationship to the modulation output of the second transmission

line at the same time. In particular, the two transmission line outputs

cannot be summed to improve the signal-to-noise ratio, as such a
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summation process only serves to garble the received modulation. If

the assumption is made that the information is in digital form, it is

quite apparent that the modulation will be distorted whenever the dif-

ference in propagation time for signals to be summed is significant

relative to the bit length. The condition that must be satisified if the

summation of the signals of the outputs of the two transmission lines

is to preserve the intelligence contained in the modulation and increase

the received signal-to-noise ratio, is that before the signals are added,

the differential time delays must be corrected to within a small frac-

tion of the reciprocal of the modulation bandwidth. This same argu-

ment is completely general and applies to the case in which signals are

received at any number of subapertures and brought to a common point

for summation.

The effect of random errors in the settings of the phase shifters

has been discussed in Section 4. 5. 2. The precision with which the

phase taper across the array must be set, module 2Tr, to obtain a

given pointing accuracy can be expressed in terms of the array beam-

width. For simplicity the aperture is taken to be circular. It is

assumed that a linear phase taper exists across the aperture diameter

such that the phase difference between the two end elements is 4. The

relation between_b and the beam position, @, is then given by the

relation

whe re

d = array diameter

k = wavelength

2rrd
$ = _ sin O (39)

ered,

O = angle measured from broadside

If two closely adjacent beam positions, 0 and {91 ,

there results

4_1 *=2rj--_d Is ]- k in O 1 - sin 8

When advantage is taken of the trigonometric identity,

1 1 (o_sin _sin _ : Z cos_ (_+_). sin_ -_)

are consid-

(40)
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and use is made of the approximations,

@ +@

cos (__i )_ cos@
2

@I - @ A@
sin (_) _ --

2 g

then Equation (40) can be reduced to

¢i -¢ : A ¢ _Z____ddk cos @
z_e (41)

The 3-db beamwidth of a uniformly illuminated circular aperture

of diameter d is given by Silver 24 as

× × (4z)

Since the effective aperture length for a scanned array is propor-

tional to the cosine of the scan angle, the beamwidth as a function of

the scan angle 8 is given by

× (43)
BW(@) - d cos@

From Equations (41) and (43) then,

A e : Bw(e) _ (44)

In Equation (44), A0 can be interpreted as the beam pointing error

that results from an error in the phase taper, where the phase error

at the end element caused by the error in phase taken is A¢. It can be

seen that if the steering error is to be held to within a quarter of the

3-db beamwidth, the phase error across the array must be less than

Tr/Z radians.

It can be assumed that within the subapertures the signals from

the various elements are to be summed at the radio frequency. If the

signals received from several subapertures are also to be summed at

the radio frequency and if time delay between subapertures must be intro-

duced, then to preserve pointing direction and coherence for the modula-

tion the time delay introduced must be known to the same accuracy

within some given interval of Zw radians. In other words, the sum of the
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time delay and the phase shift must be held to an error of less than

Tr/2 radian, modulo 2_, across the array where the number of integer

multiples of 27r has been reduced. If the signals have been detected at

the outputs of the subapertures, however, the tolerance on the time

delay is reduced.

Subaperture Size. Although a precise determination of the optimum

subaperture size cannot be given at this juncture, a summary of the

principal factors that influence the choice of this dimension can pro-

vide a preliminary estimate. A few assumptions, of course, must be

made.

A large array is represented schematically in Figure 4-32; the

aperture can conveniently be considered to consist of subapertures that

in turn may consist of subsections.

A subaperture is considered here as that portion of the antenna

over which the signals are added linearly at the radio frequency with-

out the introduction of a special time delay or signal processing. In

the instance of an array of large parabolic reflectors, the subaperture

would be the aperture of a single reflector. In the case of an elec-

tronically scanned array, the subapertures would consist of subsections

or elements.

SUBAPERTURE

r A.

I SUBSECTION SUBSECTION i

_S PHASE

HIFTERS

TIME J
DELAY

I

ANTENNA SYSTEM OUTPUT

SUBAPERTURE

SUBSECTION SUBSECTION

TIME

DELAY

I

Figure 4-32. Subapertures for large array.
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A very large antenna array should be usable at large scan angles

which, for sake of illustration, can be taken as 60 degrees. At such

large angles the signal received at the rear edge of the aperture will

lag that received at the front edge by a time approaching the time

required for an electromagnetic wave to propagate a distance equal to

the aperture dimension. Since pure time delay compensation within a

subaperture appears inappropriate on the basis of cost and complexity,
it follows that the maximum dimension usable for a subaperture in an

electronically scanning antenna must be small relative to the equiva-

lent spatial length of one bit period, that is, the distance travelled by

an electromagnetic wave during the bit period.

Detailed analysis will be required to determine exactly the extent

of garble and modulation distortion introduced as a function of aperture
dimension. This analysis is straightforward, if perhaps laborious for

any particular modulation system. A reasonable choice, which would

be expected to be confirmed by the details of this analysis when per-
formed, would be an aperture dimension that did not exceed about one-

tenth of the spatial equivalent of a bit period at the highest bit rate for

which the receiving system is to be designed. Beyond this point the

system's self noise should become noticeable, while with aperture

transit times not exceeding one tenth of the bit period, the integrated

effect over the aperture should be essentially negligible. If a megabit

data rate is assumed, the dimension corresponding to the duration of

one-tenth of a bit is approximately lO0 feet.

Although the size of a mechanically gimballed reflector antenna

is not limited by propagation time within the subaperture, since the

plane of the aperture is aligned with the incoming wavefront, the size

of a mechanically positioned array could be so limited, depending upon

design, by propagation time or losses within the feed system. The

size of parabolic reflector antennas tends rather to be limited by cost,

because of the complexity of the structure required to achieve the

required surface tolerances and also because of the precision

demanded of the servo-mechanisms with which the increasingly
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narrow beam is pointed. The cost rises rapidly as size is increased;

reference to Figure 4-14 (estimated costs of antenna systems versus

occultation time) indicates that a diameter of approximately 100 feet,

although not a firm figure, appears a reasonable choice.

Two important factors affect the determination of the minimum

subaperture size. As the size of the subaperture decreases, the nec-

essary signal distribution and processing systems become more

extensive and complex and hence, more expensive. The advantage

from this standpoint lies in using as large a subaperture as is practi-

cable. Second and more significant, the subaperture must be made

sufficiently large to permit the acquisition by some means of a

coherent signal for processing.

The matter in question is that of obtaining a coherent carrier for

demodulation of the intelligence on the incoming wave at each individ-

ual subaperture. In a somewhat more general context, this problem

reduces to an adjustment of the carrier phases of the signals received

at each of the many subapertures so that the carrier signals can be
added in phase. Many alternatives are available for the achievement

of this objective.
The heart of the carrier phasing problem lies in the means

employed for initial acquisition. Initial acquisition is important

because, once a suitable composite carrier reference is available,

the carriers received from each individual subaperture can in prin-

ciple be compared with this composite and their phases adjusted

accordingly. Once acquisition has been effected, closed-loop control

techniques can assure that the carriers are thereafter aFpropriately

phased relative to one another.

The first, and most straightforward, means for acquisition of

the carrier is the employment of a separate phase-locked receiver for
each individual subaperture. Acquisition by this technique implies

that sufficient carrier power must be available in the output from the

subaperture to permit lock-on; this requirement, in turn, may under

some circumstances have significant implications for the division of

signal power between the carrier and the information modulated onto it.
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Clearly, any signal power which must remain in the carrier to
facilitate initial acquisition is no longer available for information
transmission. In the extreme case, situations are conceivable in

which the signal strength at the output of the subaperture would be

insufficient to permit carrier lock-on even if the full power of the

signal resided in the carrier. It is also important to observe that,
when a separate phase-locked receiver is employed at each subaper-

ture for carrier acquisition, attention must be paid to the pattern of

the individual subaperture. That is, amplitude taper over the com-

plete array may have very beneficial effects for the array as a whole

but may do nothing to control the sidelobes, and hence the received

backlobe or sidelobe radiation in the output of the individual subaper-

ture. Since the lock-on characteristics of the phase-locked receiver

associated with the subaperture are influenced only by the signal-to-

spectral-noise density in the subaperture output, sidelobe control to
assure a low level of backlobe and sidelobe thermal radiation may

well prove essential.
It was considerations of this nature that prompted the analysis

in the preceding subsection of the effect of the sun's presence in
the subaperture pattern on the overall noise temperature of an adap-

tive antenna.

Alternative techniques for the achievement of carrier lock-on

are possible. In one technique that has been proposed the signals
received from all subapertures are added with various phase shifts

introduced before addition; the resulting set of signals formed by this

summation process is then searched to find one in which the carrier

components have added nearly enough in phase to permit acquisition
and carrier tracking. It is implicit in this technique, of course, that

all signals must be brought together by means of suitable transmission

lines. Two distinct configurations are possible. In the first place,

all signals may be brought together directly at radio frequency via

transmission lines driven by suitable low-noise preamplifiers. For

long transmission lines this arrangement would be an expensive pro-

cedure in view of the number of subapertures that would be employed

in a typical large ground array.

4-96



An alternative is the distribution of a common local oscillator

signal to each of the subapertures. Distribution would be by transmis-

sion lines or microwave links driven by suitable transmitters or line

drivers. The local oscillator signal would be amplified as required and

then mixed with the received signal at each individual subaperture; the

resulting signal would then be transmitted to a common point by means

of a second set of transmission lines. The losses would be very modest

at intermediate frequencies, so that suitable power levels would be pro-

vided by the low noise amplifiers. In any case, however, a low-noise

RF preamplifier would be required at the individual subaperture to avoid

signal-to-noise degradation in the mixer.

As can be seen from the foregoing discussion, it is immaterial how

or at what frequencies the signals received from the individual subaper-

tures are transmitted to a common point so long as the signal-to-spectral-

noise-density ratio is not degraded unduly and so long as, in the event

that a frequency translation is employed, a local ozcillator signal derived

from a common source is provided to each subaperture. A recent inves-

tigation has shown that, if each signal is split into two signals whose

phases differ by 180 degrees and if, for a total of n subapertures, the

2 n sums are formed by a choice of one of the two signals from each sub-

aperture and a summation of the chosen signals in all possible ways, at

least one of the resulting 2 n signals will exhibit a carrier component at

least equivalent to that which would be obtained with a composite aperture

40 percent as large as the composite formed from the total of n subaper-

tures, if perfect phasing is supposed. Half the resulting 2 n sum signals

are redundant since to each of the sum signals there corresponds another

that differs only in sign. It follows from this observation that, in prac-

tice, only a subset of 2 n-1 signals would be formed. For large numbers

of subapertures, say on the order of several hundred, the resulting num-

ber of combinations clearly becomes so large as to render this method of

acquisition infeasible if an equivalent 40 percent efficiency is to be

achieved.

An alternative would consist of the introduction of phase shifts cho-

sen from a table of random numbers in the outputs of each of the sub-

apertures and the addition of the resulting signals. Repeating this
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process only a modest number of times would quite likely result in a

carrier component sufficient for acquisition. This possibility requires

further investigation. The analysis should prove entirely straight-

forward inasmuch as the random phase shifts introduced in each sum-

mand before summation convert the problem into the classical one of

random walks. It is readily seen from this observation that the resulting

amplitude of the carrier component will have a Rayleigh distribution.

It is, perhaps, important to observe that the same technique

can be applied to any collection of the subapertures, rather than to the

totality thereof. It may in some cases be feasible to assure carrier

lock-on without the complications inherent when the signals from all

the subapertures are handled simultaneously for this purpose. The

phase-splitting technique described previously might prove feasible if

a relatively small number of subapertures were employed. It should

also be observed that either the phase-splitting or the random phase

shift technique could be employed in time sequence rather than simul-

taneously in parallel channels if the time available for acquisition

permitted. Sequential acquisition by this means would reduce the

amount of equipment required and would result in very substantial

cost savings. In any event, an acquisition scheme that utilizes more
subapertures than are really required to provide an adequately clean

carrier reference signal should be avoided since unnecessary prolif-

eration can prove both complex and costly.

There are several additional points on the subject of acquisition

that should be noted. First, if all signals are transmitted to a common

point, either at radio or intermediate frequency, all phase-locked

receivers can, in principle, be located at this point rather than distrib-

uted with one in the neighborhood of each subaperture, in the event

that the system is configured so that each subaperture is provided with

its own phase-locked receiver. This practice of having all phase-
locked receivers in a common central facility has a number of desir-

able features, but it may lead to very severe isolation problems.
A second point is probably of more importance from a practical

standpoint. Summation of the outputs of a number of the subapertures

to obtain a reinforced carrier component can, up to a certain point, be
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performed on the basis of a priori knowledge. That is, until the total

dimension of the region scanned by a collection of subapertures becomes

so large that decorrelation caused by atmospheric or ionospheric inho-

mogeneities becomes significant, the phase corrections to be introduced

in the outputs of the individual subapertures can be determined on an a

priori basis from a knowledge of the angular position of the source. The

resulting phase corrections can then be made by means of variable phase

shifters before addition. As a practical matter, the number of subaper-

tures which are ganged in this fashion will be limited by the phase sta-

bility of the various circuits and transmission lines and by the accuracy

with which the angular position of the source is known; the phasing prob-

lem for a collection of subapertures is equivalent to the beam-pointing

problem for a single antenna whose dimension is equal to the maximum

separation between the subapertures in the group employed in this way.

A final observation may be made that demodulation of the

received data need not necessarily be performed at a central point. As

long as a coherent carrier signal is available at each subaperture, the

output of the subaperture can be mixed with a suitably phased version of

the carrier reference to obtain the baseband information. The resulting

baseband may still consist of a number of subcarriers or of commutated

pulse-code-modulated data channels, The important point is that, if

more convenient, the data can be made available in video form at the out-

put of each individual subaperture, so that video transmission lines may

be employed to bring the data together at a single point for time delay

compensation and coherent addition. Such demodulated data will be avail-

able almost automatically if a separate phase-locked receiver is

employed at each subaperture, but any other provision for a coherent

carrier will serve as well for this purpose.

Since distribution system costs and acquisition and processing

problems tend to decrease with increasing subaperture size, it would

appear that the subaperture should be as large as the indicated upper
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bounds permit. It is concluded with reasonable assurance that a sub-

aperture dimension of approximately I00 feet across is appropriate to

the system parameters assumed, being large enough, in general to

facilitate carrier acquisition and small enough to avoid modulation
distortion.

Further discussion of the subject of time delay compensation for

large arrays is given in Appendix E.

Components for Ground-Based Antennas. It is advantageous at this

point to review the principal requirements to be placed on the ground-

based antenna system. The optimum antenna system for this application

is one that maximizes the signal-to-noise ratio under the practical

constraints of cost, tolerances, reliability, and noise environment.

The antenna must have a low equivalent noise temperature and

must provide high gain. These requirements imply a pattern of high

directivity with low sidelobes and, hopefully, low grating lobes.

Further, the losses in the distribution system and in the phase shifters

should be low.

The high-gain pattern must be steerable through a wide angle in

the equatorial plane to provide a practical minimum of the number of

sites around the earth. Relatively wide angular steering in a direction

perpendicular to the equatorial plane is also required as determined

by the width of the region in which spacecraft trajectories may lie and

the particular locations of sites. Because of the necessarily high

directivity of the antenna system, angular pointing must be extremely

accurate. It is significant, however, that only very low angular

tracking rates are needed.

Since the orientation of an antenna on a spacecraft can be expected

to change relative to a given ground-based antenna during the course of

a mission, and since provision must be made to communicate with more

than one spacecraft, it is extremely desirable if not mandatory that the

antenna system be circularly polarized.

As has been discussed earlier, there are basically two types of

systems that can be used in a large ground-based antenna, a large

mechanically steerable reflector and a phased array with a stationary

or fixed aperture comprised of subapertures. The subapertures of
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the latter system consist of radiating elements whose relative phasing
controls the pointing direction of the antenna beam.

The steerable paraboloidal reflector has been shown to be econom-

ically and technically practical for antenna aperture sizes on the order

of a few hundred feet. For aperture sizes on the order of a thousand

feet, however, a single steerable paraboloid does not appear feasible

today and has very little probability of being practical in the next ten

or twenty years.

The mechanical problems that limit the size of gimballed antennas

do not limit the size of the array. Rather the problem of time-delay
compensation becomes significant. There are also at present practical

problems of cost, reliability, and maintainability that must be solved

before the thousand-foot array becomes feasible.

A phased array consists of radiating elements, a power distribu-

tion or collection network, a beam-steering or phasing system, and
an optimal number of low noise preamplifiers. Each of these antenna

subsystems plays an important and interdependent role in determination

of the overall antenna performance. There exist a variety of phased-

array techniques: these include the use of a phase shifter at each

element; the use of a multiple-beam, multiple-port antenna with

switches to steer the beam; and the use of a mixing scheme that trans-

lates a phase shift from the operating frequency to a convenient

frequency band. Those areas in phased-array distribution and phase-

shifter technology that must be advanced to make the array practical
are delineated in this subsection.

Distribution Networks. The distribution network collects the

signal from each of the radiating elements and phase shifters of the

array and brings them to a common receiving port so that they combine

in phase with a minimum of loss. The distribution network largely

and sometimes wholly determines the antenna aperture distribution;

hence, it determines the antenna pattern, sidelobe level, and directivity.

Distribution systems are taken here to include those in which the distri-

bution is essentially optical. Various types of distribution networks

described here are for multiple-beam systems, phase scanned systems,
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and low-noise systems. Areas of further study and development beyond

the present state of the art that are necessary to satisfy the present

requirements are pointed out.

Multiple-Beam Distribution Systems. Several kinds of multiple-

beam antenna systems have been devised. The distribution system

which forms the multiple beams determines the geometrical and

mechanical characteristics of the antennas. The three types briefly

indicated in the following paragraphs illustrate the difficulties attend-

ant on their application, most of which are due to circuit or geometri-

cal size and complexity.

The use of a Butler matrix for beam forming is practical where

2n outputs are desired. The Butler feed has the same number of

inputs as feed outputs, and simultaneous beams with uniform aperture

distributions may be formed at each input. Other distributions can be

obtained through combinations of adjacent beams that yield cos x,
Z

cos x on a pedestal, and higher order cosine distributions. The matrix

configuration is excessively complex for most applications that do not

specifically require multiple simultaneous beams.

Studies have been made of various spherical lens configurations

which are capable of simultaneous multiple beams, true time delay,

high gain, and polarization diversity. Typical of these devices is the

constrained lens, in which energy, rather than passing through a

dielectric lens, is constrained to controlled paths established by

cables between pickup and transfer surfaces. Modifications of this

basic constrained lens have also been studied which provide increased

aperture utilization. One of these employs a reflector in a manner simi-

lar to the Cassegrain antenna. Another employs a dielectric correcting

lens in a manner analogous to the Mangin mirror. A third version

employs a dielectric hemisphere as the phasing mechanism and saves

considerable cabling. Each of these lens systems provides true time

delay and multiple beam capability and has advantages in packaging

and efficiency over similar systems such as the Luneberg lens. All

versions suffer from the disadvantage that the spherical surfaces

required for true time delay phasing would result in a severe con-

struction problem in very large arrays.
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Analytical and experimental studies have been conducted with

lenses that utilize two-dimensional geodesic surfaces for multiple

beam forming. Extremely wide scan capability is possible with these

geodesic-type lenses, which also provide simplicity, loose tolerance

requirements, and broadband operation. However, the curved phasing

surfaces of the geodesic configurations also imply construction
complexity.

Phase-Scanned Systems. Phase-scanned antennas may be con-

s[dered to fall into either of two general types. In one type, the radia-

ting structure is fed from behind either in an optical fashion with an

auxiliary feed or with a system of transmission lines or waveguides.

A so-called feed-through distribution system is used, and the phase

shifters required are of the transmission variety. The second general

type of phase-scanned antenna consists of a radiating structure fed

from the front by a primary feed. The phase control is achieved with

phase shifters of the reflecting type located behind the elements of the

radiating surface. This kind of antenna is ordinarily designated as a

reflectarray. Since both antennas are scanned, contiguous apertures

can be used.

Feed-through arrays utilizing a transmission line network for

the feed offer the advantage that the aperture distribution can be

closely controlled. Corporate feeds provide convenient power division

where a uniform distribution to 2n outputs is desired. Tapered distri-

butions for low sidelobes or output configurations that require unequal

power division in the tees are more complicated to achieve but are

still practical. The corporate feed may also be used for monopulse;

however, the step amplitude discontinuity between each half of the

aperture results in sidelobe degradation on the difference pattern. The

disadvantage of parallel feeding techniques such as the corporate feed

at the radio frequency for large arrays is the great amount of trans-

mission line required and the resultant loss.
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In the front-fed reflectarray, a planar array of radiating

elements is utilized as a phase reflecting surface in a manner analogous

to the operation of a parabolic reflector. Radiation from the feed horn

is collimated by the phase-reflecting surface to form a beam. The

beam is steered by adjustments in the phase shift distributions of the

phase shifters located at the terminations of the radiating elements.

The phase shifters can be of any design that meets the other require-

ments such as loss and reliability.

When the reflectarray is viewed as a distribution network, it can

be considered as a junction with the input terminal of the feed horn as

the sum arm and all the radiating elements as output arms. In contrast

to the transmission line distribution network, in which power is divided

in enclosed waveguides and junctions, the input-output junction of the

reflectarray is simply free space. This fact offers two advantages for

application to very large arrays. Since the distribution network is

basically free space, there is practically no loss due to dissipation.

The transmission loss is mainly spillover loss that can be made small

by proper feed design which also permits some control of the aperture

illumination. The simplicity, cost, and weight of the reflectarray dis-

tribution network are better than the same characteristics in the trans-

mission line network.

Low Noise Feed Systems. The desired aperture distribution for

optically-fed arrays such as lenses, reflectarrays, etc. , can be

achieved with a shaped feed. An aperture distribution close to a 35-db

Taylor distribution can be realized by a simple, conical, or pyramidal

horn. A wide range of adjustment of amplitude taper is possible by

variations in the size of feed horn and the f/D ratio. Flexibility in

aperture design is possible with multiple elements in the feed. Studies

have been carried out on the general requirements of feed systems to

provide low noise and highly efficient operation of antenna systems.

These results have been applied to the actual design and development

of low-noise feed systems for front-fed and Cassegrain antennas.

Among these developments are multimode shaped-beam feeds,
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quasi-array feeds, and shaped-sub-reflector systems, all of which are

directly applicable to reflectarray and lens-feed configurations.

A shaped primary pattern such as can be obtained from a multi-

mode feed can minimize feed spillover loss. Such a feed may be either

rectangular or circular in cross section depending on the shape of the

aperture to be illuminated. Shaping to obtain a variety of aperture

illuminations can be accomplished with relatively few modes in a feed.

Three separate, multimode feed systems that have been developed at

the Hughes Aircraft Company are representative of what can be done.

These feeds provide dual-circular polarization capability, dual-plane

monopulse, and dual-frequency operation. The first system was a

multimode, monopulse, prime-focus feed developed to meet a high-

efficiency, high-power requirement. From this system, two Casse-

grain feed systems were developed; the final system is a multimode,

shaped-beam Cassegrain feed used on 85-foot antenna systems. This

feed provides an antenna efficiency of about 60 percent with a noise

temperature of about 15 degrees Kelvin. These quantities include the

losses in the monopulse bridge. At the same time, monopulse tracking

to about 1/100 of a beamwidth accuracy is provided in two planes.

Monopulse feed systems for Cassegrain antennas have been

studied that include four, five, eight, and twelve-horn feeds. A four-

horn feed using an "egg-crate" lens structure to improve the aperture

distribution has been developed for use in a 60-foot Cassegrain antenna.

This feed is an S-band, dual-polarized, dual-plane monopulse feed. A

five-horn monopulse feed has been designed to provide monopulse track-

ing at one frequency and simple listening or transmitting at a second

frequency. This feed is particularly suited to a 3:2 frequency separa-

tion. A four-horn feed using a multimode shaping aperture has also

been developed. This feed provides a higher aperture efficiency and

lower noise temperature than a standard four-horn feed.
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Investigation of the optimum shape of the sub-reflector in a dual-

reflector antenna such as a Cassegrain system has also been a topic

of considerable investigation. Modification of the hyperboloid edge is

one example of a useful technique. The shaping of the reflector surface

may also be controlled to provide particular aperture distributions with

various feed systems. This technique gives an additional parameter in

the control of low-noise antenna designs.

Phase Shifters. Beam steering for a deep-space communication

phased array of the conventional type requires some type of phase-

shifting device. The primary requirements for such a device are that

it be capable of 360 degrees of phase shift and that it have an extremely

low insertion loss. From system noise considerations, it would be

preferable that this insertion loss be less than 0. 1 db. In addition to

these primary considerations, the device must be relatively inexpen-

sive, be capable of being packaged to fit within the array element

spacing, and be temperature insensitive to ambient environments. At

present, there is no phase shifting device that will meet all of these

requirements. As a basis for a discussion of these devices, a com-

parison was made of the performance parameters of present state-of-

the-art devices at an operating frequency of Z. 3 Ghz. The results are

given in Table 4-15. As may be seen from the Table, many of the

devices have high insertion losses, partly due to the usual require-

ments of fast switching speed and high power handling, but if the

antenna is used in reception only, neither high-speed nor high-power

capability is necessary. In Table 4-14 the devices were classified

into five general groups. These groups, their advantages and disadvan-

tages, and the work that would be required to adapt them to a very large

phased array are discussed below.

Diode Phase Shifters. Diode phase shifters are small, light-

weight units, insensitive to temperature, which can be switched from

one phase setting to another in a few nanoseconds. They are, at

present, somewhat costly due to the cost of the diodes and their
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mounting structure, and they have an insertion loss higher than desired

for this application. A picture of a typical 4-bit, S-band, diode phase

shifter is shown in Figure 4-33.

Ferrite Phase Shifters. Ferrite phase shifters are typically

waveguide size, moderate in weight, somewhat temperature sensitive,

can be switched from one phase setting to another in a few micro-

seconds and require significant drive energy. They are somewhat

costly, due to the cost of the ferrite material, and also have an inser-

tion loss higher than desired for this application. A picture of a typi-

cal, four-bit, C-band, ferrite phase shifter is given in Figure 4-34.

Ferroelectric Phase Shifters. Ferroelectric phase shifters are

quite small and lightweight. They are, at present, extremely temper-

ature sensitive, due to the sensitivity of the ferroelectric crystal, and

they have very high insertion loss characteristics. Since they are still

in the experimental stages, production costs are unknown. At present,

it appears that a major improvement will be required in the basic crys-

tal before these devices can be considered for use in a large array.

Plasma Phase Shifters. As in the case of the ferroelectric phase

shifter, the plasma phase shifter is still in the experimental stage. It

is moderate in size and weight with a negligible temperature sensitivity.

The insertion loss is somewhat higher than desired but a significant

reduction may be possible. At the present time, it is not a low cost

device and requires significant drive energy; both factors are due to

the need for the generating and sustaining of a plasma.

Mechanical Phase Shifters. Because of the relatively slow scan

rate requirements of the present application, mechanical phase shifters

are appropriate. In fact, from an insertion loss and cost standpoint,

they appear to be the most promising units. In particular, four

different devices show merit. One is a reflecting type, two of which,

when used with a hybrid coupler, make a precision transmission phase

shifter. The remaining three devices are transmission types.
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A reflecting type of mechanical phase shifter can be built using

a section of waveguide with a movable shorting plate. A sketch of

such a device is shown in Figure 4-35. This relatively simple micro-

wave design can be made to provide 360 degrees of phase shift with

extremely low insertion loss. A drive mechanism to move the shorting

plate that is reliable, inexpensive, and which will operate with fairly

low drive power appears feasible.

_\\\_\\\\\\\\\\\\_

APERTURE

Figure 4-35. A reflecting type of mechanical phase shifter.

The first type of transmission, mechanical phase shifter uses a

filter network that allows an inductive or capacitive element to be

mechanically movable. Such a device has been built at S-band where

a thin, stainless-steel, waveguide wall provided a variable capacitive

element. The maximum wall movement was 0. 025 inch and the device

was capable of 360 degrees of phase shift with an insertion loss of

0. 2 db. Because of the thin, stainless-steel, waveguide wall, and the

small movement, the drive power was fairly low. The device was

rather complex, however, and efforts would be needed to simplify the

unit to reduce production costs.

The second type of transmission, mechanical phase shifter uses

a movable, slow-wave structure located within a waveguide. Such a

device has been built at S-band and has been used in quantities for line-

length trimming. The slow-wave structure was made of aluminum to

provide low insertion loss and allow die casting to be used to reduce

the cost. The device was capable of 180 degrees of phase shift and had
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an insertion loss of less than 0. 1 db. To utilize a device of this type

in a large ground-based array, efforts must be expended towards the

development of a simplified, low cost, reliable drive mechanism.

Possibilities of controlling the device by thermal means, air pressure,

or hydraulic pressure should be explored.

A third type of transmission, mechanical phase shifter; the

variable-width waveguide, uses a section of rectangular waveguide

in which the width can be varied by some mechanical means. Such a

device is shown in Figure 4-36. As may be seen from the figure, the

device is relatively simple and should be capable of providing the

required phase shift with extremely low insertion loss. As in the case

of the other mechanical phase shifters, the major task in designing

such a device will be to provide the proper drive mechanism.

DEFORMABLE WAVEGUIDE

Figure 4-36. A deformable waveguide mechanical phase shifter.

At the present time, there is no phase shifter design that fully

meets the requirements immediately. Many electronic phase shifters

have response times much faster than required for the present appli-

cation; thus there is a possibility of improvement in other parameters

such as RF loss and switching power by a sacrifice in switching time.

In the cases of diode, ferrite, and plasma shifters, further investiga-

tion should be carried out in anticipation of future lower costs and

improvements in diodes and ferrite materials.
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Because of the inherent low loss of mechanical phase shifters,

these devices meet the loss requirement for a large array, and simple,

reliable, low-cost drivers and driving circuits appear feasible. Con-

sequently, mechanical phase shifters appear quite promising.

Conclusions. The reflectarray with a shaped-beam feed system

appears to be one of the more promising configurations for this large

array application. The placement of subapertures of this kind, side by

side, permits a reasonably smooth aperture distribution to be achieved

and the problem of grating lobes to be minimized. Circular polariza-

tion can also be achieved with the feed system. For a subaperture

100 feet in diameter, the feed horn would be suspended 25 to 50 feet in

height. Mechanically, this arrangement is perfectly feasible, but in

the event that lower feed horn height is desirable, an auxiliary reflector

similar to that of a Cassegrain system can be introduced to reduce the

height. A mechanical phase shifter of the reflecting type provides

quite low losses and could be made inexpensively, since tolerances

are quite loose. The combination of low-loss phase shifters and an

optical distribution system would permit an extremely high efficiency.

Although the subject of phase shifter controls is not treated in the pre-

ceding discussion, the technique of scan control using digital drivers

and digital computation for the positioning of the phase shifters is

currently well under stood.

It is believed that at this juncture, intensive design investigations

of the application of the reflectarray technique should be initiated.
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4. 5.6 Spacecraft Antennas

Most space vehicles are now equipped with antennas of relatively

simple design, such as parabolic reflectors and feeds or arrays of slots

or dipoles. Recently small electronically and mechanically despun

antennas have been demonstrated. However, the size and weight of

spacecraft antennas is still limited by constraints imposed by the

booster vehicle and its shroud. An increase in antenna aperture would

assist immensely in the improvement of the system performance char-

acteristics. In Section 4. 5. l, it is indicated that an increase of gain

of about 10 db over that planned for the Voyager antenna for 1971 can

be taken as a goal. The gain of this Voyager antenna is expected to be

3Z db. This figure presumably represents the anticipated state-of-the-

art for conventional antennas by 1971. There are limitations in several

principal areas when increases in the gain are contemplated by conven-

tional techniques which increase the aperture area:

At a given frequency and a specified efficiency, the same toler-

ances on the surface of a reflector must be maintained regardless of

the size. Holding the tolerances becomes more difficult with increasing

size and, although not impossible for ground-based antennas, would

result in increased weight for a spacecraft antenna.

A second limitation is the space available in the launch vehicle

for the stowing of large antennas. A single large antenna may require

a shroud that is much too large or awkward for the vehicle to handle.

Techniques for overcoming this problem by fabrication of the antenna

in segments have been studied. The antenna would then be automatically

assembled after the craft left the earth's atmosphere. The application

of these techniques, as well as of those that employ inflatable structures,

involves difficulties in attainment of the required antenna tolerances.

There is also a serious question about the reliability of some of the

schemes. As larger boosters come into general use, the limitation

of available shroud space will become less severe.
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A third limitation on antenna size results from the constraints on

steering accuracy and on precise knowledge of spacecraft orientation.

If the antenna is pre-programmed to point toward the earth, then the

accuracy with which the spacecraft orientation is known is significant.

If the antenna has no steering capability with respect to the spacecraft,

then the spacecraft orientation must be precisely maintained because
of the narrow beam of a high gain antenna. The maintaining of a pre-

cise orientation may entail the consumption of large quantities of

propellant over the life of a long mission.

The use of a self-steering array on the spacecraft may overcome

many of the problems outlined and allow a sizeable increase in gain

over the 3Z db planned for Voyager. The self-steering technique would

allow a large antenna to be created from numerous radiating units,

each of which would have a relatively low gain and a beam sufficiently

broad so as not to impose severe tolerances on spacecraft attitude

control or antenna steering. The phasing of elements of a self-steering

array is accomplished by the associated electronics so that the toler-

ance in the positions of the individual elements relative to the plane of

an incident wavefront becomes unimportant, as a rule. This tolerance

relaxation should minimize positioning and alignment problems in

deploying or unfurling antennas.

A general discussion of important considerations in the design of

self-steering arrays for spacecraft is given here. Interelement spacings

and angles of coverage, a typical design of a spacecraft array, and

phase and amplitude errors are significant matters discussed. Some

possible mechanizations for self-steering spacecraft arrays are covered.

Performances are described for arrays with separated up and down link
frequencies and for arrays whose performance does not depend on such

separation. Discussion of promising circuits for doppler correction is
included.

Self-Steering Array Interelement Spacing. In a self-steering array it

is desirable that the number of steering modules required for a given
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gain be minimized. The weight, size, and cost are proportional to

the number of modules and are nearly independent of aperture size and

frequency.

A self-steered antenna that utilizes a conventional Butler matrix

array, a self-phased array, or an adaptive array has an interelement

spacing of approximately 0.5 ko. With this spacing the beams can be

generated anywhere within visible space without the presence of grating

lobes. The number of beams is equal to the number of elements in the

Butler matrix array. In some applications it is desirable that most of

the space be filled to obtain wide angle coverage. For communication

probes, however, a much smaller angle of coverage is required. This

limited angle of coverage permits the use of a larger interelement

spacing and an element that has directivity. In this manner a higher

gain array is achieved from a limited number of modules or from a

matrix of a given number of terminals.

In an alternative technique for the achievement of increased gain,

the interelement spacing is maintained at 0.5 k , but the number of
O

elements is increased. This procedure yields the best array with few

compromises in performance for a small angle of coverage. However,

the number of elements is quite large and the complexity of the system

soon becomes prohibitive. For example, an array with a 35 db gain,

after nominal losses have been accounted for, would require a

35-by-35k ° aperture. With an interelement spacing of 0. 5ko, the array

would have approximately 5000 elements, and a 70-by-70 Butler matrix,

or comparable matrix of element feeds would be required. Not only is

a matrix of this size beyond the state-of-the-art, but the internal losses

would probably reduce the increased gain to a fraction of that corre-

sponding to the theoretical aperture increase. Of necessity, then,

larger interelement spacings have to be used.

The use of larger interelement spacings raises some problems

and necessitates a compromise in the array design. The severity of

the compromise depends on a number of parameters in the system

such as the gain required, the coverage angle required, and the

largest number of modules or the largest Butler matrix which is within
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the state-of-the-art and has reasonable loss. The main compromise

results from the fact that the array generates grating lobes whenever I

the interelement spacing exceeds 0. 5k .
o

Grating lobes are actually new beams that arise to fill the space I

left when increased interelement spacing causes the beams from a given

array to become narrower and the primary set of beams formed by the I

array or matrix to decrease in coverage angle. In the case of a Butler

matrix, each new beam or grating lobe shares a terminal with one of
the original beams at the bottom of the matrix, as shown in Figure 4-37.

These grating lobes decrease the gain of the desired beams and must

besuppressedas completely as possible. Hence the gain of the element

must be increased and its beamwidth reduced as much as possible with-

out cutting down on the gain of the outermost desired beams. The ideal

element pattern would be a sector beam which would cover all the

desired beams and then abruptly drop to zero to suppress all the grating I

lobes. However, ittakes a very large aperture for the element to create

PRIMARY

I
&

GRATING
GRATING

Figure 4- 37. Generation of grating lobes by Butler matrix that uses

interelement spacing considerably larger than ko/2.
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even a poor approximation to a sector beam, much more than the

aperture available to each element even though the elements have been

spread apart considerably.

There is a straightforward solution to the problem of the adjust-

ment of the element gain: The portion of the aperture available to each

element can be assumed to be uniformly illuminated and the element

beamwidth can be determined from the applicable equation. It can then

be shown that the 3 db point of the element pattern always coincides

with the outside 3 db point of the outermost principal beam. Thus, the

outside beams will be reduced in amplitude by 3 db compared with those

in the center of the cluster. With the assumption that the element

pattern is essentially that of a uniformly illuminated segment of the

aperture, the pattern would have the form

kL
m sin@

2

whe r e

k = the free space propagation constant

L = the edge length of the element area

@ = the angle off broadside in the principal plane.

At @ = @o = the maximum scan angle, this pattern must be down 3 db

from its maximum value.

In Table 4-15 are listed the number of modules for various cover-

age angles with a minimum array gain of 42 db. The data given can

also be interpreted in terms of the allowable misalignment of the module

with respect to an average array surface. Thus ±5 ° coverage angle

means that the elements could be tilted ±5 ° with respect to the average

array surface. No allowance is then made for scanning the beam itself

to take into account the vehicle orientation with respect to the earth.

In practice, a combination of scanning angle plus a misalignment

tolerance will give the required coverage angle per module.
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Maximum Gain Per

Coverage Angle, degrees Number of Modules Module, db

±5

±i0

±15

126

5OO

I000

24

18

15

Table 4-15. Number of modules as a function of the coverage angle

for a minimum gain of 42 db (maximum gain = 45 db).

Example of Self-Steering Array Design. An 8-by-8 element planar

array with uniform interelement spacing is presented in illustration of

the design considerations for a self-steering array. The considerations

presented in this subsection are those that were preliminary to the

design of the antenna system described in Appendix D. For this type of

array, with each element connected to an independent matched gener-

ator or load, the total gain in the beam-pointing direction is N times

the effective gain, g, of a typical element, where g is measured in the

presence of all other elements terminated in matched loads and the

number of elements is N. The number N is assumed to be sufficiently

large so that most elements see similar environments.

Each element radiates I/N of the total power P. Therefore, the

available power per element, p, is

P
a

p --
N (4-45)

and the effective radiated power (ERP) is

ERP --Pa G = N 2 gp (4-46)

The required coverage region is a cone of half angle 15 degrees.

The element factor must cover this region. To suppress grating lobes

for the scanned beams, the element factor must also be small outside

this region. It was therefore assumed that the 3 db points of the ele-

ment factor fall at ±15 degrees. As has been indicated above, the
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element pattern is assumed to be essentially that of a uniformly illumi-

nated segment of the aperture. At e = 9o = 15°, this pattern must be

down 3 db from its maximum value. This requires that L/k be 1.714.

The area gain is then approximately

I
I

I

I
I

I
I
I

I

I

I
I

I
I

(L) 2
ga = 4 Tr -_ = 36. 9 (4-47)

To account for losses due to spacing, coupling, and other factors, it is

assumed that actual element gain is 1 db less so that the element gain

is taken as 29.2 at broadside. It will be one half that value at 15 degrees

from broadside in the principal plane, which is 14.6 or 11.6 db.

The gain is then taken as

and

Gma x = (64) (29.2) or 32.8 db at broadside

Gmin = (64) (14.6) or 29.8 db at 15 degrees from broadside

(4-48)

Because of the periodic structure of an 8-by-8 element planar

array and the large interelement spacing required to realize the desired

gain, grating lobes exist. The element factor must fall off sharply, about

3 db, at the edge of the coverage angle, to suppress these lobes. To

eliminate the grating lobes, it would be desirable to have the elements

arranged in a nonuniform fashion that would avoid the periodic struc-

ture inherent in an 8-by-8 array. If the grating lobes can be avoided

in the array factor, the element factor may be broadened somewhat;

this increase will reduce the peak gain of the array but will not decrease

the minimum gain for the beam scanned ±15 degrees from broadside.

The achievement of high gain for this antenna requires that the

radiation pattern of each element should be sufficiently directive, and

consequently the separation between the elements must be large enough,

so that the effective aperture areas of the elements do not overlap. The

directivity of each element is limited by the scanning requirement. The

ideal element factor is of the form

J sec @ 0°<0-<15 °
E(@, ¢)= I 0 15°< e _<90 °
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so that the antenna gain remains essentially constant as the beam scans I

off broadside and the power radiated in the undesired regions is

minimized. m

A promising design approach is the arrangement of the elements

in concentric circles with every element approximately the same dis-

tance from its neighbors. This circular arrangement is illustrated by I

the 64-element array shown in Figure 4-38. The average separation

elements in this circular array is about 2-I/4 wavelengths. Ibetween

Calculations were made for the

/.0_'0---_ radiation patterns of this !array

I_-9_'_'_\ for various scan angles, with and •
i ._ t "tl"- _ ..._,. \

¢Jll/_/ .---'I_-_ i i_\ without the assumed element factor
i _ \ \,, . .i #, , .,...-t--...i , shownm , ure 39  hosopa,- I

r/If; _ * I_, \ _ _j. terns are shown in Figure 4-40.

_i , _ 000 t _T_ _ The radiation pattern of an 8-by-8 I

i \\ \/ _.jL.._ I i ,I J I array with uniformly spaced (2-1/4

"(\;\_i_--j-_-f.,J_/_/ wave-lengths) elements is given in I
i. _._ _-0" .. I ._,AI.E, Figure 4 41 for corn arison; the

_ _ - p

scan angle was taken to be 15 |
0 I 2 3 I

degrees, and the element factor

Figure 4-38.

0

-iO

-i5
0 I0

Figure 4-39.

q

oj

Arrangement of
elements of 64-

element circu-

larly polarized

ar ray.

/ \
2O 30 40 5O

Assumed element

factor of circular

array. (Helical
element )

was included.

Antenna Error Considerations.

Because of errors in phase and

amplitude for each of the 64 ele-

ments of the circular array, the

average antenna gain will be

reduced, and random deviations

can be expected. The first step

in an analysis of such an effect is

the calculation of the statistics of

antenna gain with independent phase

and amplitude errors assumed at

each element. (The independent

amplitude error assumption is
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Figure 4-40. Calculated radiation patterns for circular array for

various scan angles.
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8-by-8 planar array
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spaced elements.

poor because of the usual definition

of antenna gain. However, the

difference will be discussed later.)

For this model the gain will be

defined by the ratio of the power

density at broadside in the actual

array to the power density at

broadside in the error-free array.

From a derivation stemming

from probability theory, 45 the

average power gain of an error-

prone antenna can be found to be

whe r e

P(Oo,9 o) z
-_

oP(Oo , 90)
I+ i=-N

i=N (4-49)

P(Oo, 90 ) = expected power density at broadside

oP(@o, go ) = the error-free power density at broadside

0-6 = the rms phase error for the signals at the elements

0- --the rms amplitude error for the signals at the

elements

N = the number of elements

fi = the excitation coefficient of the ith element.

For a 64-element uniformly illuminated array, there results

2
G--l

-0- 6

_G -(2560-_2 + _64)

64

1/2

(4-50)
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G is the average gain, and _G is the rms deviation about this average.
So, for instance, the actual antenna gain is at least G - 0-G with 84%

probability. Inspection of Equation (4-50) shows that unless _¢2<< _64,

1

°_G = 4" _ (4-51)

The probability distribution of the random gain variability may be

approximated by a X 2 distribution. However for a high number of

degrees of freedom (v>30), the X Z distribution approaches a normal

distribution, and, at any rate, the normal distribution percentage

points will yield more conservative answers to the gain statistics

que stions.

The gain statistics are described by

[ IProb Gain > G - n_ G = Pn (4-52.)

For the normal distribution,

Pl.0 --84. l percent

P2.0 = 97.7 percent

P2.3 = 99.0 percent

P2.6 --99. 5 percent

where the subscript indicates the multiplier for the standard deviation.

For determination of the gain and phase tolerances to be imposed

upon the electronics for this system, it is desirable to have a gain

degradation as small as is reasonable with a high confidence level. As

an example, the gain degradation that will be allowed for this system

is less than I/2 db with a 99 percent confidence.

The 99 percent gain level is given by
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For a total gain degradation less than i/2 db from the no-error

gain (with 99 percent confidence) it is required that

i db > 10 log (i -_ 2 0.575 )
Z' 10 6 - % (4-53)

This requirement means that any of the following combinations of rms

errors would be permissible:

°-6< 5°' _c --O. 192 (1.7 db)

_6 = I0°' _ --0. 139 (l.Z db)

_6 = 15°' _ = 0. 0695 (0.6 db)

_6 = 19°' _c = 0

These results assume that the main beam peak levels for inde-

pendent errors directly describe antenna gain. However, as used here,

true antenna gain must be defined in terms of a constant input power to

the antenna. Then, in terms of this definition, the main beam peak

levels will describe the antenna gain when errors are assumed that

are correlated so that total power input is constant. This special type

of correlation restricts the antenna gain variations so that larger errors

than those quoted previously are permissible. In view of these con-

siderations, the stated phase and amplitude error specification for the

system electronics seem conservative.

Mechanizations of Self-Steerable Spacecraft Antenna Systems. There

are numerous self-steering systems that have been proposed and/or

built. ,:cSome of these are mentioned in Section 4.3. 5 of this study.

They fall into two general classes, phase inversion types, and phase-

locked loop types. A choice of circuit that would be best suited for

use on a spacecraft should be made on the basis of several important

factors. Among these are the signal strength at the output of each

module, the percentage difference between the up-link and down-link

frequencies, the complexity of the circuit, and the amount of full array

References 36, 38, 39, 41, 43, 46, and 47.
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gain needed for accurate demodulation of the information or commands

on the up-link. These factors will be discussed in turn.

The signal level at the output of a module can be calculated in the

usual manner. If it is assumed that a 210-foot parabolic reflector

antenna with a gain of 61 db is used on the ground in conjunction with

a 100 Kw transmitter operating at 2. i GHz, and a module with a beam-

width of 5° is used on the spacecraft, then, at a distance of l AU, the

signal strength out of a single module will be -93 dbm. Since the

signals transmitted to the spacecraft are generally at a relatively slow

data rate, the receiving circuits of the spacecraft module can have

narrow bandwidths. A narrow band receiver with a sensitivity of -93dbm

does not require extreme sophistication, and either a phase inversion

or phase-locked loop type of retrodirective circuit should be acceptable.

The maximum doppler shift to be expected on a mission of this type

may go as high as 200 to 300 KHz. At least one of the modules must

carry a master oscillator with a capability of sweeping over this range

in order to acquire the signal. After lock-on, the operation would be

essentially narrow band

Array Performance with Separated Up-Link and Down-Link

Frequencies The "bandwidth" of the system, or more accurately,

the percentage difference between the up-link and down-link frequencies,

may be a major consideration It is shown in Reference 30, p. 166, that

a degradation in the gain of the return beam from a phase inversion

type of circuit will exceed i db, due to scanning at a different rate than

the transmitted beam, unless the following equality is satisfied.

e 0. Z63 p

sin@ L (4-54)Wp R
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where

w = down-link angular frequencye

w = up-link angular frequency (pilot)
P

k = wavelength of up-link signal
P
L = largest linear dimension of array

@R = maximum angle that beam is required to scan off the normal
to the array

The assumption of a scan angle of 4-2. 5°, corresponding to the 3-db

points of a 5-degree module, and an array size of 20 feet yields a ratio

of 13 percent for We/W . This result is well above the ratio of 8 percentP

that results from the presently used DSIF frequencies of 2295 MHz and

2115 MHz. There is a possibility, however, that the up-link frequency

may be changed to the 1700 MHz region. This frequency would produce

e 25 percent and the gain of the retransmitted beam woulda ratio of _--- =
P

be degraded approximately 3 db.

Retrodirective circuits can be designed to work with no phase

errors over any bandwidth required by the use of discrete step multi-

plier chains and phase-locked loops. Thus there is no degradation at all

to be considered from unequal beam scanning, and arrays can be made as

large as desired. A retrodirective circuit designed to eliminate phase

errors will be discussed below following the treatment of other promising

type s.

In regards to circuit complexity, the phase inversion circuits are

simpler than the phase-locked loop circuits; hence they are to be favored

if they measure up to the performance requirements of the system. The

problem of complexity is tied into another situation, the question of the

need for full array gain on reception. In the majority of up-link trans-

mission systems, wide bandwidth is not required since only commands

are sent to the spacecraft. In this case it is likely that a single module

will decode the signal with a sufficiently high degree of accuracy, and no

additional circuitry will be required. Should additional wideband
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modulation be required, however, such as psuedo-random noise for

turn-around ranging or television pictures to a manned vehicle, it may
be necessary to combine the signals from all modules to produce what

has come to be termed "full array gain on receive". In that case either

a more complex phase-inversion circuit or a phase-locked loop circuit

must be used. The phase-locked loop circuits are usually easily adapted

to provide full array gain on reception.

Promising Retrodirective Circuits. The simplest circuit that

could be used for this antenna would be similar to the system of
37

Sichelstiel et al., shown in Figure 4-42. This circuitwillredirect the

signal back to earth with a possible loss in gain due to a beam pointing error

that results from the difference between the reception and transmission

frequencies as noted above. It will not add the outputs of all the modules

in phase to produce full array gain on reception. Hence, the maximum

signal that the receiver will obtain is that picked up by a single mod_11e.

A system that uses phase inversion by mixing and gives full array

gain on reception is shown in Figure 4-43. It can be seen from the figure

that a considerably greater amount of hardware is required for this

system; hence, it should be used only when the additional gain on recep-

tion is absolutely necessary. Furthermore, it may be desirable to

adjust other parameters in the telecommunications system so that the

simpler circuit could be used. The circuit shown in Figure 4-43 would

suffer the same loss in gain of the retransmitted beam due to the

difference between receiving and transmitting frequencies as would

the simpler circuit.

A phase-locked loop retrodirective system is shown in Fig-

ure 4-44. This system could work with very weak signals, and it

is easy to obtain full array gain by the simple addition of the syn-

chronously detected video outputs of the various elements. However,

this circuit has the same problem as the phase inversion circuits:

the retransmitted beam may suffer a pointing error loss due to the

frequency differential.
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Figure 4.44. Retrodirective antenna using phase-

locked loop

Arrays for Separated Up- and Down-Link Frequencies. The

retrodirective circuits discussed so far are all limited in the size of

the array that may be used effectively because of the different rates of

scan between the receiving and transmitting beams. It would be useful

to have a retrodirective circuit with the two beams that scan at the same

rate regardless of the frequency difference between the transmitted and

received signals. Then there would be no scanning loss to be considered,

and the array could be made as large as desired consistent with other

mission parameters. Further, the scan angle could be as large as

desired, consistent with the limitation imposed by the beamwidth of the

roodales.
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It is shown in the development below that the necessary condition

for the achievement of equal scan rates is that the ratio of the phase

difference between elements for the transmitted signal to the phase

difference between elements for the received signal be equal to the

ratio of the transmitting frequency to the receiving frequency.

In Figure 4-45 the geometry for determination of the scan angle

of an array is shown. For the receiving frequency, the expression may
be written

= d =-

Figure 4-45. Geometry for

scan angle of

array

where

Cr

63

d

but

X

_br ZrT d sin 63 (4-55)= k
r

= phase difference between

the two elements in

radians

= scan angle off broadside

= distance between ele-

ments

= wavelength
r

c

r f
r

where

c = velocity of light

f = frequency of received signal
r

Then Equation (4-55) becomes

2_ f d sin 63
r

_r -- c
(4-56)

In a similar fashion the phase difference between elements for the

transmitted frequency is shown to be:

217 f d sin 63

_T = T (4-57)C
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The ratio of ¢T to ¢r then becomes

2rr fT d sin @
CT c

Cr Zrrf d sin @r
c

(4-58)

Since d is constant regardless of frequency and @ should be equal

at the two frequencies, these terms will cancel out along with the con-

stants, leaving

CT fT

Cr - f (4- 59)
r

It has been established that the transmitting and receiving beams

will always point in the same direction (i.e., the scan rates are equal)

when the ratio of the phase shifts between elements for the two signals

is equM to the ratio of the two frequencies. A retrodirective circuit

can be devised that will maintain the relationship given in Equation 4-59

and avoid the limitations that result from unequal scan rates.

The different parts of a phase-locked loop retrodirective system

that meets the phase relationship determined above are shown in

Figures 4-46 through 4-50. In this system the modules are not all the

same size and are not all connected to the same type of retrodirective

circuit. As an example, a 25-module array for use with a retrodirective

system that has no scanning loss is shown in Figure 4-46. The center

module is called the Reference Module and is connected to the circuit

sho,vn in Figure 4-47 which provides reference signals to the other mod-

ules so that the doppler shift can be preserved. Two pairs of rectangularly

shaped modules are also shown. One pair is used to drive special cir-

cuitry which enables the system to lock-up without phase ambiguities

when the received signal is off-axis in the elevation plane, and the other

pair performs a similar function for the azimuth plane. These pairs are
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AZIMUTH PLANE
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Azimuth No. I, 2 Azimuth Ambiguity Elimination Modules Nos. I And 2

Elevation No. I, 2 Elevation Arnbigulty Elim:notion Modules Nos. I And 2

Figure 4-46. Z5-module array layout

connected to the retrodirective

circuit shown in Figure 4-48

and, in addition, some of their

signal is used to drive the bias-

ing circuits of Figure 4-49 and

4-50. These circuits will be

described below. All the other

i modules are called common

modules and are connected to

the circuit for Figure 17 only.

The operation of the various

circuits will be described in

turn.

The circuit which is

connected to the Reference

Module (Figure 4-47) operates

as follows. The phase-locked

loop is essentially a "divide-by-n-circuit", where nis some convenient

integer, that is locked onto the received signal. The voltage-controlled

oscillator (VCO) can be a transistor oscillator operating in the region

from 50 to 100 MHz whose output is multiplied up to the RF operating

range. This arrangement is the way voltage-controlled microwave

oscillators are usually built; however, they are not always shown that

way in block diagrams. In the present arrangement, part of the output

of the VCO is multiplied by another integer, m (usually larger than n),

for the transmitted signal. The values of m and n are selected from the

numbers that can be achieved conveniently in multiplier chains and that

still allow both the transmitted and received frequencies to lie in their

specified frequency bands. (This technique was used in the Surveyor

transponder.) It is assumed that the phase of the signal picked up by the

reference module is at 0°; hence, its retransmitted signal does not have

to undergo a phase inversion. The output signal is retransmitted at a

frequency different from that of the received signal by a ratio of rn, and
n
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Figure 4-47. Phase-locked loop circuit for Reference

Module

any component of doppler in the received signal is preserved and

transmitted by the same ratio so that spacecraft velocity can be deter-

mined at the ground station.

Two signals from the VCO are amplified and sent to all the other

modules. The fundamental frequency of the VCO is distributed in one

line to act as the signal source for the phase-locked loops in each cir-

cuit, while the second harmonic of the VCO is distributed in another line

to provide a reference signal for the mixer in each circuit. At each

module (see Figure 4-48), the output of a phase detector drives a

voltage-controlled phase shifter that shifts the phase of the signal from

the Reference Mod_11e at the fundamental frequency so that after being
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multiplied by n, it tracks the phase of the wave being received by that

module. Thus, the signal out of the phase shifter contains a phase term

unique to that module. The phase of this signal is inverted in the mixer

where it is mixed with the higher frequency reference signal coming

from the reference module. After the signal is filtered to obtain

only the difference term and multiplied by m, it is ready to have the

data modulated onto it, to be amplified, and to be reradiated by the

module. It should be noted that the phase term is multiplied by m so
n

that the criteria set out above for no degradation due to scanning are met.

It may also be noted that the component of received signal due to doppler

is present and retransmitted also at the ratio of mm as was the case with
n

the Reference Module. The retrodirective circuits considered pre-

viously in Figures 4-4Z through 4-44 do not inherently preserve the

doppler component of signal; to do so, they must use a reference module

as described in a later discussion.

Voltage-controlled phase shifters are used in all modules, except

in the Reference Module, rather than VCO's because a free running

"divide-by-n" phase-locked loop could lock-up at any one of n different

values of phase for its VCO. Only one of these phases will yield the

proper phase for the transmitted signal after being multiplied by m.

Henc._, all the others are ambiguous solutions.

Use of the voltage-controlled phase shifters eliminates most of

the ambiguities that can appear. Certainpossibilities still exist, however,

when the phase of the received signal at a common module is equal to or

greater than ± Tr out-of-phase with the fundamental signal sent from the

Reference Module. This problem may be overcome with a bias voltage

that will shift the d-c level of the error amplifiers in the common modules

by an amount sufficient to shift the phase of the reference signal so that

it is within ± _ of the received signal before the module is activated. The

magnitude of the bias voltage (and its polarity) required for a signal

arriving from a specific direction is determined by two phase detectors,

one of which is connected to the modules labeled Elevation No. l and

Elevation No. 2, and the other to modules Azimuth No. 1 and Azimuth

No. 2 (See Figures 4-46, 4-49, and 4-50). These modules are made
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long and thin so that their phase centers are sufficiently close together

that the phases of their received signals differ by less than ± _ within

the scan angle anticipated (in this case ±5 °).

The acquisition procedure of the array will then proceed as follows.

The Reference Module is allowed to lock-up first. It then provides refer-

ence signals to all the other modules. Next the elevation modules are

allowed to lock-up. They may or may not be at an ambiguous solution in

regards to the azimuth plane, but this condition would not affect the phase

of the output of their times-n multiplers. It would affect only their

transmitted signals. The phase centers of the two modules are too close

to each other and to that of the Reference Module to acquire an ambiguity

in the elevation plane. The phases of the outputs of the two times-n

multipliers are compared in a phase detector as shown in Figure 4-49.

The output of this phase detector determines approximately the angle of

arrival of the signal in the elevation plane. This output is amplified and

distributed as a bias signal to all the error amplifiers of the modales

whose phase centers differ from that of the Reference Module in the

elevation plane. Modules on rows further from the Reference Module

receive a bias voltage greater than those nearer. The bias voltages

shift the d-c level of the error amplifiers, which in turn results in a

phase shift out of the voltage-controlled phase =hifters so that the

possibility of the phase-locked loops arriving at an ambiguous position

is eliminated as far as the elevation plane is concerned.

The azimuth ambiguity modules having been pre-set by the eleva-

tion bias signal are now allowed to lock-up. They cannot lock-up in an

ambiguous solution because their phase centers are too close to each

other and to that of the Reference Module in the azimuth plane to allow

it; and the elevation bias signal precludes it in the elevation plane. The

azimuth bias voltage is then generated and distributed in much the same

way as is the elevation bias voltage. (See Figure 4-50. )

The next step is to turn off the elevation ambiguity modules and

allow the azimuth bias voltage to preset their phase shifters. _ny prior

ambiguity that may have existed will thus be eliminated when they are
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turned back on. The phase-locked loops of the azimuth ambiguity

modules will remain locked-up if the removal and re-application of the

elevation bias is not done too abruptly. This condition can be assured

by the use of low pass filters on the bias lines.

When proper bias voltages are present from both the elevation

and azimuth circuits, all the common modules in the array can be acti-

vated and they all should lock-on without ambiguities. This arrangement

does, however, impose one limitation on the flatness of the antenna
which must be kept in mind if a deployable structure is contemplated.

The individual modules must not deviate from a plane by more than
approximately 1/4 wavelength {about i. 3 inches at 2.3 GHz). This
restriction results from the fact that the bias circuits will not be able

to predict exactly the phase required at a module, and if they are allowed

a tolerance of just under ± _, then any physical misalignment that
TT

accounts for more than ± _ phase error would produce a situation that
allows an ambiguous solution. A more sophisticated circait of this

type that relates the bias voltage of each module to the received phase
of adjacent modules would undoubtedly produce a more lenient flatness

tolerance. It is speculated that the flatness tolerance could then be
TT

relaxed to ±-_ between adjacent modules and no overall array flatness
specification would be required.

As illustrated in Figures 4-47 through 4-50 the self-steering

systems are quite complex in terms of the number of components that

are required for implementation. The rather complicated nature of

the systems is due in a great measure to the requirement that the dop-

pler information be preserved so that the velocity of the spacecraft
can be measured and so that the beam-pointing directions coincide on

both reception and retransmission. The reference element provides the

signal with the doppler preserved, while the VCO's and mixers at the

remaining elements provide the phase inversion necessary to transmit

a signal back toward the direction of the incident signal. Each typical

element has circuitry that requires the following components.
l RF diplexer
l phase detector
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1 band pass filter (information band)

1 low pass filter (loop filter)

1 d-c error amplifier

1 voltage-controlled phase shifter

Z frequency multipliers

1 RF mixer

1 low pass filter (for RF mixer output)

1 modulator

1 RF power amplifier

The Reference Module circuitry includes the following components.

1 RF diplexer

1 phase detector

1 low pass filter (loop filter)

1 band pass filter (information band)

1 d-c error amplifier

1 voltage-controlled oscillator

3 frequency multipliers

1 modulator

1 RFpower amplifier

In addition the removal of phase ambiguities as described in a

previous section requires a bias distribution network.

If a relatively large number of radiating elements are to be used,

then there must be available compact, lightweight components that are

space qualified and that require small operating powers (high efficiency).

A number of companies are developing microminiaturized and integrated

components that may ultimately lead to reasonable sizes and weights of

the modules. A continuing survey of the state-of-the-art in components

such as these is therefore recommended as one desirable area of effort.

Since the number of components per module is quite large for an

array that uses phase-locked loops for self-steering, it is important

that the number of modules in an overall array be kept as small as

possible. Therefore, the required value of the effective radiated power,

the power available from individual RF power amplifiers, and the required
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coverage region must be investigated to insure that all requirements are
satisfied with the minimum number of elements. At the same time, it

is also desirable to have modules with as high a gain as possible to

insure that the signal-to-noise ratio at the input to the phase-locked

loops is sufficiently high so that phase lock is maintained. Satisfaction

of this requirement also tends to minimize the number of modules in the

total array. Not all of these requirements, however, do tend to mini-

mize the number of modules. For example, if the spacecraft orienta-

tion is not controlled sufficiently accurately, the required coverage

region will be undesirably large. The module beamwidths must then be

sufficiently wide to blanket the coverage region. Consequently, the

module gain and size may be undesirably small. /ks a result, the

number of modules may become excessive, or the signal-to-noise-ratio

at the module may fall below the required threshold for maintaining lock.

Some typical mission parameters should be used in a realistic

evaluation of the inter-relations among all these quantities.

Summary. Because of the problems associated with increasing the gain

of a spacecraft antenna when the aperture size is increased, attention

has been directed to self-steering arrays. Methods of effecting the

design of the radiating structure are presented, together with a design

example. Functional descriptions of circuitry suitable for the necessary

signal processing to accomplish beam pointing with doppler corrections

are given. Assessment of the state-of-the art indicates that designs can

be, and in fact are being, implemented for specific spacecraft

applications. Development of specific systems and components, par-

ticularly solid state amplifiers, should be continued and expanded.
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5. 0 OPTICAL COMMUNICATIONS TECHNOLOGY

Optical communication links potentially capable of long-range,

high data rate transmission such as will be required for deep space

communications are still in the experimental stage. While the tech-

niques and components necessary for their implementation do exist,

they are at present in various phases of the research and development

cycle. Because of the only-recent availability of coherent light sources

(lasers) and the intense interest in the subject, developments are

proceeding at a very rapid pace; so much so in fact that it is diffi-

cult to establish the current state of the art and very risky to attempt

an extrapolation over a period of several years. The recent develop-

ment of the CO 2 laser can be cited as an example: the first CO Z laser,

reported in April 1964, had a power output of one milliwatt; the output

was increased to about the 10-watt level during the first year, and has

since been increased bywellover an order of magnitude. The material

presented in this section is thus subject to rapid revision or complete

supersedure in certain areas by new developments in techniques and

materials.

5. 1 OPTICAL POWER SOURCES -- LASERS

Lasers present a means for the generation of coherent electro-

magnetic energy in the optical region. The lateral coherence of laser

radiation permits focussing and collimation to the diffraction limit as

from a point source, while the temporal coherence allows heterodyne

(and homodyne) detection methods to be used, thus extending radio-

frequency techniques into the optical region.

For transmission of data at a rate of 10 8 bits per second, the

goal assumed in this study for an optical communication system, the

transmitter will be effectively in continuous operation; thus the charac-

teristics of lasers.operated in the CW mode are pertinent to this

application.
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5. I. 1 Characteristics of Materials

The active materials which are used in CW laser oscillators

include gases, solids and semiconductors. While laser action has been

demonstrated in materials other than those listed in Table 5-I, only the

most commonly used or most promising materials are included here.

Maser action has been demonstrated in the region between millimeter

and infrared wavelengths but only at very low power levels as of this

date.

The wavelengths available for operation comprise a set of discrete

spectral lines associated with the various active materials. Generally

more than one line is excited in a given laser; however, techniques

exist for suppressing oscillation on all but the desired lines. Laser

frequency tuning may also be accomplished, but only over a very limited

range (usually less than one part in 104). (Nonlinear devices can be

employed externally for tuning over wider ranges. )

The output powers of existing CW laser oscillators vary froma

few milliwatts for single-mode operation to over I00 watts for multi-

mode operation. CW powers considerably in excess of I00 watts have

been realized for both CO 2 andNd:YAG lasers. The most important

factor limiting the output power is the very low energy conversion

efficiency of most CW lasers. It usually ranges from 0.01 percent to

1.0 percent; however, a few exceptions are the CO 2 molecular laser

(15 percent) and the GaAs injection laser (approximately 25 percent)

when operated at cryogenic temperatures.

5. 1.2 System Considerations

The spectral bandwidth of the laser output, which is an indication

of the frequency stability, may range from a few cycles per second to

several tens of gigaHertz. For multimode operation the spectral width

of the output is closely related to the fluorescence linewidth of the

atomic transition. Gas lasers exhibit the most monochromatic output

since their fluorescence linewidths are t_p.cally one to two orders of

magnitude less than for solids or semiconductors. Thermal fluctuations
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He-Ne

He-Ne

He-Ne

Xe

Ar +

Ar +

Ar +

CO2

Active
Mate rial

Cr 3+

Nd3+(CaWO4)

Nd3+(YAG)

Nd3+(YAG)

Nd3+Cr3+(YAG)

Ho3+Er 3+Tm3+yb3 + (YAG)

DyZ+(CaFz)

GaAs

Wavelength

0.6118

0.6328

I. 084

I. 152

0. 6328

0.6328

3.5

9.0

0.4579(0.05)

0.4765(0. I)

o. 4880(0.25)
O. 4965(0. I)

o. 51o7(o. ))
0.5145(0.4)

(as above)

0.4880

10.57 (0.75)
10.59 (0.25)

10.59

10.59

0.6943

I. 06

I. 06

Output
Power

5

50

5

20

900

tO0

i. 06

1.06

2. 123

0. I

0.5

mW

mW
mW

mW

mW

mW

mW

mW

2.36

0.84

10W

1
16 W

1W

16W

135 W

300 W

1.0W

1W

200 W

1.0W

lOW

15W

1.2W

lZW

Dimensions of

Active Material

[6mmx 1.8m

10 minx 5.5 m ]

5mmxl. Zm]

2.6 mmxb0 cm

6 mm x 60 cm ]

/

4mrnx2.6 m]

3 mmx 45 cm

Z5mmxZ. 0m

4 m active length

2 mmx 5.08 cm

3 mmx 3.5 cm

1-1/4 in. long

0.5 mmx 0.4 cm
diode dimen-

sions)

Comments

Single mode,
commercially
available

research

devices

research

device

research

devices,

o. 1 - o.2%
efficiency

airborne devel-

opment device

4.0% efficiency,
single mode for
each line

15% efficiency

-10% efficiency

water cooled

methyl alcohol

cooling
(approximately
300 °K)

0.2% efficiency

water cooled,

0. 1% efficiency

liquid Nitrogen
(77°K) bath

5% efficiency

liquid Nitrogen
(77°K) bath

liquid He
(4 °K) bath,

23% efficiency

Table 5-i. CW laser oscillators.
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and mechanical vibrations are chiefly responsible for line broadening

in single-mode operation which is required to achieve full coherence

and its attendant benefits.

Production of a single-frequency output is still quite difficult

because of the longitudinal mode structure of the long Fabry-Perot

cavities used. Only the 10.6M CO Z and 3.5M Xenon lines are narrow

enough to produce a reasonable output in a Fabry-Perot resonator short

enough so that only one longitudinal mode oscillates. This is due to the

narrow doppler-broadened line widths of these two transitions (= 50 MHz

for i0.6 M CO Z and =120 MHzfor 3. 5MXe), but even these two transitions

will require further mode selection techniques if longer, higher power

tubes are considered. Because of the broad doppler line widths of the

Ar and He-Ne lasers, single-frequency operation through the use of a

sufficiently short Fabry-Perot resonator entails a drastic loss in output

power. Techniques involving 3 mirror resonators allow the use of

longer tubes at the expense of added complexity both mechanical and

electronic (servo-controlled mirror positioning), but still sacrifice

output power because the entire line is not used. The most promising

technique developed to date is that of intracavity mode locking 18 with a

n n 19 selective output coupling 20subsequent coherent recombi atio or

This technique has been demonstrated in the laboratory, but practical

power levels at a single frequency are yet to be obtained.

The beam divergence for axial (single) mode operation is charac-

terized in the diffraction limit by k/D, where k is the operating wave-

length and D is the diameter of the diameter of the beam. For most

laser oscillators, the output beam diameter is of the order of a few

millimeters, so beam divergences of the order of 0.1 milliradians can

be obtained for visible light. (The semiconductor laser oscillator is

somewhat unique since the active region has dimensions of the order of

a few microns. The resultant beam divergence, even in the diffraction

limit, is of the order of a few degrees.) For maximum output power,

where nonaxial modes are excited ir _he es_lllator, the beam divergence

increases to as much as 10 milliradians. The divergence at the output
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of the laser can be reduced, however, by passage through a recollimating

lens system, the reduction in beam divergence being proportional to the

increase in beam diameter in passing through the optical system. The

price paid for smaller beam divergence is thus a larger transmitting

aperture and a small loss in signal strength due to reflection and

absorption in the lens system.

A laser amplifier may be employed following an oscillator to

increase the available output power. By this means a high spectral

radiance output can be derived from a low-power single-mode oscillator

with little resultant degradation in overall efficiency due to mode selec-

tion. The relatively narrow passband of a laser amplifier requires that

the operating wavelength of the amplifier and oscillator be closely

matched. It is usual, therefore, to use the same laser material for

both oscillator and amplifier. Even in this case, however, a tempera-

ture differential may be sufficient to put the oscillator frequency out-

side the passband of the amplifier. The oscillator-amplifier frequency

matching problem can be alleviated somewhat by thc use of laser fre-

quency tuning techniques which allow small changes in the frequency,

generally by less than one part in 104 . Nonlinear devices may also be

used to achieve frequency diversification by means of second harmonic

generation; and recently a parametric laser oscillator has been

reported 21, tunable +10 percent about the neodymium wavelength. The

distortion or spreading of the laser beam in passing through an amplifier

depends on the optical homogeneity of the laser amplifier medium. For

gas laser amplifiers this is not a problem: a diffraction limited input

yields a diffraction limited output beam.

The noise generated in lasers is of three types: (1) spontaneous

emission noise, (Z) gain fluctuations, and (3) mode-interference noise.

Except for operation near threshold, spontaneous emission noise can be

neglected. Gain fluctuations due to pump power modulation can gener-

ally be reduced to an insignificant level by careful design of the pump

source and associated power supplies. Mode-interference noise occurs

if two or more modes are excited, as in a high power laser oscillator.

The beat frequencies produced between the various modes may range
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from several kilocycles per second to hundreds of megacycles per

second. Schemes for phase locking the various modes by means of

intracavitymodulation, as mentioned above, promise to make it possi-

ble to obtain high power output with little or no mode-interference noise.

Excessive heating of laser components, as a result of the low

energy conversion efficiency of laser materials, can lead to performance

degradation. In a solid-state laser, for example, thermally-induced

distortion, or stress birefringence, due to a nonlinear temperature dis-

tribution across the laser rod, can cause depolarization of the laser

output. This depolarization is not constant but displays a radial depend-

ence. As a result, the output from the laser has a seemingly random

polarization and, where a polarized signal is required, the beam must

be repolarizedwith consequent loss in signal power. Attention must

be given therefore to methods for minimizing temperature effects,

improving heat transfer, or, preferably, increasing energy conversion

efficiencies to reduce input power requirements simultaneously. An

improvement in conversion efficiency can result from a better match

of the energy spectrum of the pump source to the excitation require-

ments of the material, or vice versa. For example, increased

efficiency (of about I/2 percent) has been reported 14 .in a neodymium

laser by the addition of chromium as a dopant to broaden the effective

pump band.

5. i. 3 Application to Space Communications

At present only three lasers, carbon dioxide (COz), "alphabet"

holmium (Ho3++Er3++Tm3++yb3+:YAG) and gallium arsenide (GaAs),

demonstrate the level of efficiency appropriate to spacecraft applica-

tions. While the GaAs laser is small and can utilize a low voltage

supply directly for pump power, it requires refrigeration. Similarly,

refrigeration is required for the optically-pumped holmium laser.

The CO? laser, on the other hand, is somewhat larger and requires

pump power at a high voltage, but because it does not need refrigera-

tion, represents a simpler and more efficient overall system. Further-

more, it has the advantage of operating at a lower frequency in an

optimal region of the spectrum, as discussed in Section 3.
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Direct solar pumping of a spaceborne laser could improve overall

transmitter efficiency on missions within the Mars orbit where the

ambient solar flux is high. An additional complication, however, would

be the need to point the solar collector at the sun while maintaining the

transmitter's alignment with the earth.

The feasibility of solar pumping has already been demonstrated;

continuous oscillation at 1.06 microns has been achieved for a solar-

pumped NdzO3-doped barium crown glass using a 60-centimeter diam-
ZZ

eter parabolic mirror , and for a neodymium-doped calcium tungstate

laser using a cone-sphere condenser of SrTiO 3. 23 However, the

maximum possible increase in overall efficiency is limited to the

reciprocal of solar cellefficiencies; and in most cases_ due to the

restricted laser pump bands, the actual increase would be consider-

ably less. Thus it is unlikely that solar pumping will have a signifi-

cant influence on the development of optical communication systems.

In a ground transmitter the efficiency is not of overriding impor-

tance. Here a frequency-doubledNd:YAG laser would certainly be a

good candidate, permitting an efficient and simple noncoherent receiver

on the spacecraft. Other possibilities include a phased-locked array of

GaAs junctions and "alphabet" holmium, although the poorer detection

efficiency at these wavelengths and the power required for refrigera-

tion effectively cancel the improved laser efficiencies.

5. Z MODULATORS

Laser modulation is accomplished by passing the beam through an

optically-transmissive medium in which one or more of the optical

transmission parameters is varied by the application of a modulating

field. The interaction of the laser beam and the modulating field in

the presence of an optically nonlinear medium makes it possible to

achieve various forms of optical modulation, including intensity,

frequency, phase, and polarization.
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Rather primitive devices exist at present for accomplishment of
all of these forms of modulation between about 0.4 and i. 5 microns.

In general, these devices are based on the use of the electro-optic effect

of birefringence in crystals and can be made to provide the 100 mega-

Hertz bandwidth desired for an optical space communication system. The

burdens of weight and modulator driving power, however, leave much

to be desired as indicated in Table 5-Z. The problems associated with

handling very high laser beam powers also have not yet been studied,

and may present some additional difficulties. However, advances both

in the synthesis of better electro-optic materials, and in the design of

modulator structures should provide optical modulators suitable for

space communications systems within the next few years.

For modulation in the infrared beyond i. 5 microns the best

immediately available techniques involve the use of elasto-optic, or

acoustic effects. Present acoustic materials and techniques can pro-
vide bandwidths of 1 to 5 megahertz, but if I00 megaHertz bandwidths

are to be achieved, it will be necessary to intensify existing research in

acoustic and other means for modulation of IR lasers at wavelengths

greater than 1.5 microns. While it is difficult to predict the time

schedule for the availability of new electro-optic crystals, there is a

good chance that materials capable of operation out to i0 microns will
be found in the next few years.

Other physical processes which may be useful for optical modu-

lation, such as controllable photon absorption in solid-state materials,
and magneto-optics, are either not very promising or are in too early

a state of research to accurately evaluate their potential usefulness.

Although the state of the art in optical modulators appears to be

advancing at a satisfactory pace, research and development remain to

be done before the technology will exist to provide optical modulators
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with fully acceptable performance and burdens for space communication

and tracking systems. The programs now in progress, if continued,

may accomplish the desired results, but wideband optical modulation is

an area which must rely on space-communications-oriented programs

to provide the necessary direction and support to assure the suitability

and timeliness of these results.

5. 3 TRANSMITTER BEAMWIDTH -- POINTING ACCURACY

The useful gain of an optical aperture (antenna) will generally be

limited not by practical aperture size but rather by pointing require-

ments. For example, at a wavelength of 1 micron a 10-centimeter

diameter aperture gives a i0 microradian beam in the diffraction limit

(k/D), equivalent to a gain ofaboutll0db. Since the half-angle of 5 micro-

radians (I arc second) represents the kind of pointing accuracy that

might be anticipated for an operational system, dependent primarily on

boresight and lead angle errors, optical transmitters will generally be

gain-constrained. The optimum relationship between beamwidth and

pointing accuracy will be determined by the distribution of pointing

errors and by the dependence of communication error rate on signal-

to-noise ratio.

For ground-based optical systems employing coherent detection,

a somewhat more stringent limit on aperture size is set by atmospheric

turbulence which, except for very carefully selected sites, will give

rise to angular distortions of i0 to I00 microradians in the wavefront.

For the spacecraft transmitter, pointing errors can generally be

classified into three basic categories:

• Boresight and Lead Angle Errors-- These errors contribute

a static or nearly constant term to pointing error and present

a special problem since they cannot be enclosed within a con-

trol loop other than a DSV-earth closed loop. The penalty

for excessive boresight errors is severe: the result is
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likely to be loss of transmission for an extended period of

time, since for ranges of 1 AU or more the round trip transit

time before corrective signals can be received from the

earth exceeds 15 minutes.

• Mechanical Telescope Perturbations- The steady-state

response of the stabilization and tracking system may often

be sufficient to suppress low frequency mechanical perturba-

tions to a tolerable level. However, due to limited frequency

response high frequency components may cause transients in

the inertial telescope pointing angle in excess of desired

limits. Since these errors are sensed as apparent line of

sight motions by the tracker they will be reduced by the

combined action of track and stabilization loops. Momentary

interruption of con_munication or imposition of constraints

on other spacecraft functions may be allowable penalties for

achievement of minimum beamwidths.

• Track Errors --Angle noise in the tracker originates from

such sources as the beacon tracking sensor and the inertial

reference sensor of the stabilization system. Because of the

low angular tracking rates required, the track loop can be

given a long time constant and its noise contribution made

negligible.

These categories may be expanded somewhat by examining indi-

vidual pointing error causes as is done in Table 5-3.
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Pointing Error Cause Means of Correction

Mechanical disturbances

of stabilized platform.

(Bearing friction and

misalignment, gimbal

c.g. misalignment,

spring torque from

leads)

a)

b)

Attenuated by inertial

stabilization

Employ focal plane
stabilization

Stabilization system
errors.

Gyro drift (static and

G-sensitive), resolver

inaccuracies, acceler-

ometer, tachometer

c) Separate from DSV

d) Improve state-of-the-art

a) Feedback compensation

b) On-gimbal star sensors

Track errors. Sensor

noise, error curve

inaccuracies, resolver

errors, focal plane
tolerances

Mechanical alignment

errors of optical axes.
(Mechanical tolerance,

lead angle errors)

5. Atmospherics

c) Track loop design

d) State-of-the-art

improvement

a) Low track loop bandwidth

b) Minimize track field-of-
view

c) Null tracking modes

a) Require only relative

alig nme nt

b) Use closed loop where

possible

c) In flight alignment/
calib ration

a) Near earth relay

b) Ground site selection

c) Spatial averaging by
distributed receivers.

Table 5-3. Pointing error causes and means of correction.

A primary limitation on pointing accuracy, and hence (except

perhaps in the far IR region where aperture size and weight may be limit-

ing) on allowable transmitter beamwidth, wiI1 be set by the accuracy to

which the transmitter boresight can be maintained with reference to the

tracker. Mechanisms for maintaining minimum alignment and lead-angle

tolerances and methods for internal calibration must therefore be pursued.
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Fine tracking can be accomplished, for example, by the movement of

small elements of the system rather than movements of the entire systems.

Examples are:

• Movement of the light source (or detector for the receiver)

in the focal plane;

• Movement of a small transfer lens in a reimaging optical

system;

• Movement of a mirror in a region of collimated light.

Methods of achieving the proper pointing vector are given in

Table 5-4.

Sensing Method Major Advantages Major Disadvantages

Stabilized platform

with gyros

Rate -gyro
stabiliz atio n

Ambient field sen-

sors (gravity gradi-

ent, magnetic, etc.)

Sun sensors

Earth beacon

sensor

Wide angle coverage;

no field-of-view

acquisition; rate mode

for nulling tumble

rates

Lightweight; low

power can be used for

tumble-rate nulling

Complex; heavy; must be

updated due to drift and

orbit rate; 1 to Z year

lifetime imposes question-

able reliability; large

vvLI=,,used as position sig-

nal, updating required due

to drift; lifetime question-
able for continuous use

Star sensors

Simple, relatively

passive sensors

Simple, reliable

Fields too weak and unpre-

dictable in deep space,

unless near planet

Pointing accuracy pres-

devices; no moving

parts; flight demon-

strated; lightweight;

minimum power

Provides earth line-

of- sight; applicable
for coarse mode

operation with gim-

baled telescope; flight

demonstrated

Provide accurate roll

reference for coarse-

fine modes; flight

demonstrated

ently limited to :hlO arc-

sec unless complicated

horizon- scan attempted

Acquisition sequence

required; weight, power

requirements are large

compared to sun sensors;

some moving parts

Relatively high power

weight requirements; non-

pa s sive me chanically;

small acquisition field-of-

view; potential discrimina

tion problems

Table 5-4. Summary of methods for achieving proper pointing vector.
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Three basic types of attitude and tracking sensors are of interest.
• Sun Sensors

• Star Sensors

• Planet Sensors

Gyroscope devices are unsuitable for extended missions because

of their short life (under I000 hours typically) and unpredictable errors

resulting from drift. Ambient field sensors are unsuitable because

field lines are not predictable with sufficient accuracy and are too weak

to be of use in interplanetary space. Approximate accuracy ranges of

various sensor types are illustrated in Figure 5-I. As seen fron_ this

figure, star trackers offer high accuracy, and a great deal of develop-

ment effort has been expended on such sensors. Figure 5-Z indicates

the weight cost of this accuracy for a variety of star trackers.

While aperture sizes, as limited by sensor accuracy and other

pointing problems, are within the state-of-the-art for established

optical fabrication techniques, the weight of telescopes increases

approximately as the square of the aperture diameter, and for a dif-

fraction limited telescope with an aperture greater that 0.5 meter the

weight can be expected to exceed i00 pounds even for lightweight con-

struction employing beryllium mirrors. Hence, in the far infrared

region (and specifically at i0.6 microns) a weight limitation may apply,

and there will be need for a trade-off study of telescope weight, as a

function of aperture and beam pointing requirements, versus transmit-

ter and power supply weight, as a function of beamwidth. As another

approach an investigation should be made of optical techniques, such

as the use of a Fresnel zone plate, which exploit the monochromaticity

of the signal to achieve lighter-weight systems.
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5.4 RECEIVER APERTURE

5.4. 1 Coherent Detection

The achievable pointing accuracy sets a restriction on the useful

receiver aperture for coherent detection in a manner similar to that for

gain-constrained transmission. For a coherent receiver, the pointing

accuracy will determine the maximum useful aperture over which the

phase of the incoming wavefront will be effectively correlated with the

local-oscillator heterodyne signal. For phase correlation within a

half-wavelength over the full aperture (corresponding to a maximum

loss of about 3 db) the diameter must satisfy the condition D r <k/Z6

so that the effective field of view corresponds to the diffraction limit

of the aperture and is just Z6ma x --k/D r where k is the signal wave-

length and 6 is the angular pointing error. For a pointing accuracy

6 = 5 microradians, the maximum effective aperture diameter at

a wavelength of I0.6 microns is about 1 meter, and at 0.7 micron only

7 centimeters, dimensions which are well within the state-of-the-art

for diffraction-limited optics. For a ground-based receiver, atmo-

spheric effects will usually set a more stringent limitation by as much

as an order of magnitude depending on site location (see Section 2.5

Atmospheric Distortion), where 6 now represents the rms deviation in

angle of the signal wavefront across the aperture.

It is evident, therefore, that for a coherent receiver, collection

efficiency will be very restricted for single aperture systems. Thus,

an important area for investigation will be the application of aperture-

array techniques in the optical region. Self-phasing of individual aper-

tures or, failing that, some form of postdetection correlation will be

required in general for operation of optical arrays within the

atmosphere.

Fine pointing may be accomplished by control of the local oscil-

lator wavefront over a single aperture, or by proper phasing among an

array of aperture elements. The latter could be most easily accom-

plished by means of a phase-locked loop at each element with IF signal

correlation.
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5. 4. 2 Noncoherent Detection

For noncoherent detection, where phase correlation is of no signifi-

cance, aperture size is not restricted by pointing capabilities, and in fact

for a ground-based receiver it is desirable to have an aperture which is

large with respect to the atmospheric amplitude coherence length in order

to average out scintillations. In this case "photon buckets" can be used to

collect the signal over large areas so that physical restrictions and costs

set the practical limit much as in the RF region of the spectrum. Require-

ments on overall dimensional tolerances, however, are modest for non-

coherent detection and do not impose a direct limitation on effective aper-

ture area. Rather a particular ratio of deviation in effective pathlength to

aperture diameter, C/D, corresponds to a constant field of view independent

of wavelength. However, an essentially specular surface is required with

angular deviations limited to the same ¢/D ratio. Little work has been done

on the development of large-aperture (non-imaging) light collectors. The

best performance so far has been achieved for a light-weight 5. 5-foot-

diameter electroformed reflector Z4 which had an equivalent _/D ratio of the

order of 0. 5 x I0 -3
It is expected that for ground-based optics where light

weight is not of prime concern this tolerance could be maintained for larger

diameters and perhaps improved.

For the large apertures of interest, detectors will be either back-

ground limited (photomultipliers in the visible part of the spectrum) or

detector-amplifier noise limited (solid-state detectors with little or no

gain). In either case the fluctuation (shot-noise) component of the noise

power (as measured at the detector output) will increase directly with aper-

ture area while the signal increases as the square of the area (as a conse-

quence of the square-law characteristic of photodetectors). Thus, the

signal-to-noise ratio will be proportional to aperture area for a constant

field of view corresponding to a particular ratio of 0-/D. An increase in

aperture area will always result in an increase in signal-to-noise ratio pro-

vided fabrication tolerances do not increase with diameter at a rate great

enough to cause a similar increase in the effective field of view, or pro-

vided 8__ < 2 8___DD A maximum allowable tolerance may be set, however, by0- D"

a practical limitation on detector size and hence on the field of view _;

thus the deviation angle of the reflected ray must be restricted to

o-<_o _ d i< d
2_-2 Zf or D-4"-_

where f is the focal length and d is the detector diameter. Methods for

construction of large "photon buckets" need study to determine the relation-

ship between costs, aperture diameter and required dimensional tolerances.
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5.5 DETECTORS

Various types of detectors have been used in the wavelength region

from 0.4 to 10 microns, but many (such as thermal detectors) have too

slow a response for application to wideband communications systems.

For fast response, detectors based on mechanisms in which the absorbed

photon energy goes into direct electronic excitation of the material are

more appropriate. This category includes photoemissive detectors,

such as photomultipliers, which are generally used in the visible region,

and semiconductor devices, which are used both in the visible and

infrared.

5.5.1 Photomultiplier Detectors

Photomultipliers are the most efficient and convenient detectors

of radiation in the visible and near infrared region. Their advantage

results from their fast response and the high, essentially noise-free

gain achieved by secondary electron multiplication.

The process of photoemission is extremely fast so that response

times of photomultipliers are limited by the time-of-flight dispersion

of the electrons in the multiplier structure rather than by the nature of

the detection mechanism. For structures employing focused geome-

tries this dispersion is typically of the order of a few nanoseconds and

hence bandwidths of the order of 100 megahertz are achievable.

Experimental devices employing crossed magnetic and electric field

focusing and traveling wave structures have been demonstrated which

are capable of even greater bandwidths.

Secondary electron multiplication raises the signal level suffi-

ciently in respect to the thermal noise at the detector output to permit

photon-limited operation. Other than shot-noise in the signal current

the only noise introduced (internally) in a good photomultiplier is due

to "dark current, " the spontaneous emission of photoelectrons by ther-

mal agitation. For high work-function photosurfaces as appropriate in

the visible, the dark current at the cathode typically represents of the

order of 105 electrons per second per square centimeter of sensitive

surface and is thus generally negligible in relation to a signal bit rate
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of 108 bits per second. For a low work-function surface (such as S-I)

as required for the extension of the photoemissive mechanism into the

near infrared, thermal emission is considerably higher; but even here,

at 108 bits per second, the number of dark electrons per signal bit is

typically less than 1 per cm Z at room temperature and can be reduced

by two orders of magnitude by cooling to -Z0°C.

Since the internal noise contribution is generally negligible for

photomultiplier detectors, these detectors will typically be signal

quantum or background noise limited. The important performance

parameter is thus the quantum efficiency of the photosurface. This is

given in Figure 5-3 as a function of wavelength for the better photo-

surface materials. The effective spectral quantum efficiency plotted

comprises two components: the intrinsic quantum efficiency of the

material, and the efficiency of absorption of the incident radiation

within a surface layer thin enough to allow escape of the photelectroncs

generated. So_me enhancement can be achieved, therefore, by insertion

of the radiation at grazing incidence or by causing multiple reflections

within the surface in order to increase the useful path length for absorp-
O

tion. At the ruby wavelength of 6943A, for example, an effective quantum

efficiency of i0 percent has been achieved by this technique, as com-

pared with the typical value of 2.5 percent. Thus, photomultiplier

detectors in the visible approach within about an order of magnitude of

the ideal requirement.

5.5. Z Semiconductor Detectors

The technology of semiconductor detectors has been developed

primarily in response to low frequency requirements, and hence avail-

able performance characteristics are often not directly applicable to the

problem of signal detection in high-data-rate systems. Response times

quoted in the literature may be related either to the basic detection

mechanism or to the performance of a particular detector in a particu-

lar circuit.

There are several photodiode materials with sensitivities in the

visible and near infrared which have sufficiently short carrier lifetimes
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?5
for use inwideband detectors. Available characteristics for these

materials are given in Table 5-5 and represent the best values currently

achievable. There is less information on detectors for the far IR

(beyond 5 microns), but available data on the most promising materials

are given in Table 5-6 with spectral response shown in Figure 5-4.

Response times of a few nanoseconds have recently been measured Z6 for

these photoconductors. Ge:Cu or Ge:Hg are currently favored for detection

at 10.6 microns although multiple internal reflection techniques currently

being investigated 27 for enhancement of photon absorption may extend

the cutoff wavelength of Ge:Au sufficiently to permit its use at a higher

temperature. The last material listed, while still in the research

phase, shows great potential with good performance indicated at liquid

nitrogen temperature.

The detectivity, D':-"(the reciprocal of the noise equivalent power

for a sensitive area of I cm 2) is the traditional figure of merit for IR

detectors. (For comparison, photomultiplier peak detectivities typi-

cally range from i0 IZ to 1015 cm I/2 cps I/2 watt -I.) For coherent

detection where internal detector noise can be made negligible, D _:'is

not applicable; and values of quantum efficiency, the parameter of

interest, have not generally been measured. The consensus is, how-

ever, that detectors can be made to give a 50 percent quantum efficiency

throughout the visible and infrared spectrum. Thus, it can be antici-

pated that with the attention presently directed to the problem, detectors

will be found that approach the ideal for coherent optical receivers.

Even for noncoherent detection, D_:_, since it is measured with a

load resistor approximately matched to the detector impedance, bears

only an indirect relationship to the effective detectivity appropriate to

a wideband receiver, in which the amplifier-input resistance must be

made low enough to provide the required bandwidth at the detector

output. The reduction in effective detectivity in going to a i00 MHz

bandwidth may be one or two orders of magnitude depending on the rela-

tive contributions of shot noise and thermal noise to the quoted D _:_value.

Thus, presently available semiconductor detectors have a performance

for wide-band, noncoherent detection several orders of magnitude below

i

I

I

I

I

I

I

I

I

I

I

I
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Detector Material kl/-Z a T °K b, _t max'

Ge:Au

Ge:Hg

Ge:Cd

Ge:Cu

Cd Te
Hg 1-x x

~9

14

22

28

iZ

70

40

Z5

18

77

aWavelength at which detectivity decreases to

i/Z its peak value.

b
Temperature at which detectivity decreases
to 1/ _-2 of its maximum value.

Table 5-6. Characteristics of semiconductor

materials for 10.6_tdetector.

that for coherent detection, or that for photomultiplier detectors

operated in either mode (assuming restricted-field, low-background

conditions in the noncoherent case). Attention has been directed

recently, however, to the problem of achieving signal gain in semi-

conductor diode detectors. Both parametric amplification and avalanche

effects have been investigated 28' 29, and the latter technique has shown

3O
good promise. Another technique which has demonstrated an improve-

ment in detection efficiency is RF biasing of the detector in a micro-
31

wave cavity. The signal can then be coupled out capacitively, so

obviating the spacecharge and spreading resistance effects associated

with ohmic contacts.
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6.0 PLASMA PROPAGATION

The success of any interplanetary mission will be heavily

dependent on uninterrupted communication through the terminal
phase.':" Various schemes have been proposed to eliminate the

so-called blackout problem. 1,2,3,4,5 Although some progress has

been made, no practical solution has yet been found. The purpose of

this study is to evaluate briefly but quantitatively the extent of the

problem for the interplanetary mission of the next decade, the time

period of interest to EI<C.

The final report is outlined according to the several phases of
the study, as follows:

• Parametric Analysis of Blackout Problem

Mission Analysis

Entry Profile
Entry-Induced Plasma Sheath

EM Wave Propagation
Parametric Results and Discussion

• Refinements in the Theoretical Models

Trajectory Calculations

Flow Field Analysis and Plasma Characteristics

EM Wave Propagation

• Overall Assessment of the Study

• Recommendations for Future Analyses

Specific vehicles, missions, and trajectories were considered according

to the anticipated requirements during the next ten years. An idealized
theoretical model was formulated in order to facilitate an extensive

range of parametric calculations which would serve as the basis for

the general evaluation of the problem. The effect of the various

.i.

"Communication during the launch phase is degraded by signal

attenuation in traversing the rocket exhaust plume. This problem is

different in a number of significant respects and is not considered in

this study.
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simplifying assumptions involved in these results are examined and
recommendations made on areas for future study.

6. 1 PARAMETRIC ANALYSIS OF BLACKOUT PROBLEM

A parametric analysis of the entry-induced communications

blackout problem expected in future interplanetary missions is pre-

sented. The overall investigation is described in five sections:

i. Mission analysis

Z. Entry profile

3. Entry-induced plasma

4. EM wave propagation

5. Analysis of blackout data
The first four sections summarize the various assumptions and

calculations made in obtaining the resultant blackout data. The results
are then discussed in the final section.

6. I. I Mission Analysis

This study area deals with the determination of likely deep space

missions expected and the design parameters important to a knowledge

of blackout during the atmospheric entry phase of these missions.

Unmanned missions into Mars and Venus warrant the most

interest; missions involving atmospheric entry into any of the other

planets appear unlikely within the time span of interest. Manned deep

space missions are forecast 6 for dates well beyond the 1970's

Although return to Earth from unmanned deep space missions

may occur in the future, at the present no such plans have been formu-

lated; thus except for possible testing of interplanetary entry vehicles,

there appears to be no specific need for an Earth reentry blackout

analysis in connection with the particular goals of this study. Attention

is therefore concentrated on Martian and Venusian entries.
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Two vehicles were selected fo r entry analysis for each planet.

The Voyager-style, blunted cone 7 was given the most study emphasis

for both planets. A heavier hemispheric vehicle (similar in dimension

and weight to Apollo) was also studied for Venusian entries while a

scaled down non-survivable version of Voyager was included in the

Martian study. Figures 6-i, 6-2, and 6-3 show these vehicles in

detail.

The variables controlling blackout during entry fall into two

general categories. The first may be called the entry parameters and

they include:

• Initial entry angle

• Initial entry velocity

• Atmospheric model

• Vehicle ballistic coefficient (W/CDA)

• Vehicle lift

9or slrnp_.ci_y, o'_ly _nn-liftin_ entries are considered in the

general parametric analysis. This appears to be a reasonable assump-

tion since the present Voyager concept is a low (and possibly zero)

lift vehicle. 7, 8 Variations of the other parameters were included in

the study with entry angle and velocity receiving the most emphasis

since they are the most flexible mission parameters.

The second category includes variables associated with the

communications system. They include :

Antenna location

Frequency

Polarization

Angle of propagation through the plasma sheath

To reduce the communications parameters to two, the polariza-

was assumed linear and the signal taken at normal incidence to the

plasma sheath. Two antenna locations were then considered, namely,

forward and side-looking. The frequency parameter was assumed to

have the values i, i0, and 94 GHz giving complete coverage of the

microwave spectrum. A vhf frequency was not included because

extremely severe blackout was expected in nearly all cases and there-

fore the data would be of little comparative value.
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6. l.g Entry Profile

The calculation of the entry trajectories was made using the HAC

Planetary Glide Program which solves stepwise the equations of motion

for a point mass vehicle entering the atmosphere. 9 The atmosphere

density is simply given by an exponential model,

P = p e- h/h °
0

where Po

altitude.

is the surface density, h is the scale height, and h is theo

The local gravitational acceleration is

g = go

where go is the surface gravity and K °

equations of motion are,

is the radius of '-_-- -'_'_ m]_

dV -D

dt m - g sin y

dY _ V cos Y + L g cosy
dt r mV V

where m is the mass, V is the velocity, ¥ is the entry angle (angle

between local horizontal and velocity vector), L = i/ZpV2CL A is the

lift, D = I/2pVZCD A is the drag, with C L and C D being the lift and

drag coefficients, respectively, and A the cross sectional area. The

parameters CD, CL, and m and A are all assumed constant during the

entry.

A number of entries were calculated for each planet from which a

selection of the most satisfactory were made. This selection was

based upon such practical limits as maximum deceleration, terminal

velocity, and vehicle heating. The entries selected are listed in
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Tables 6-1 and 6-2. It shouldbe noted that due to the thin Martian

atmosphere no entries utilizing the heavy, hemispheric vehicle

(100 < W/CDA < 1000) are acceptable and only low W/CDA vehicles

(Voyager = 10, non-survivable probe = 3) can be used.

In each entry approximately 12 points on the profile curve were

selected for further analysis.

Vehicle

Hemisphere

Hemisphere

Hemisphere

Hemisphere

Hemisphere

Voyager

Voyager

Voyager

Voyager

Voyager

Voyager

Voyager

Voyager

Voyager

Voyager

Voyager

Entry
Case

1

2

3

4

5

1

2

3

4

5

6

7

8

9

10

11

Entry

Velocity

(K ft/sec)

15

15

25

25

35

15

25

15

25

35

15

25

35

15

25

35

Entry

Angle

(degrees)

5

5

5

9O

9O

45

45

45

i0

i0

I0

5

5

5

C omments

W/CDA = 100

W/CDA = I000

W/CDA = 100

W/CDA = 1000

W/CDA = 100

W/CDA = 10

W/CDA = 10

W/CDA = 1 0

w/c A = io
D

W/CDA = f 0

W/CDA = 10

W/CDA = l0

W/CDA = 10

W/CDA = i 0

W/CDA = i0

W/CDA : i0

Table 6-i. Venus entries.
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Vehicle

Voyager

Voyage r

Voyager

Voyager

Voyager

Voyager

Voyager

Voyage r

Voyager

Voyager

Voyager

Voyager

Non- sur vivable

entry probe

Non- survivable

entry probe

Non -su rvivable

entry probe

Non-survivable

entry probe

Entry
Case

IA

2A

3A

4A

5A

6A

iB

2B

3B

4B

5B

6B

l

2

3

4

Entry Entry

Velocity Angle
(K ft/sec) (degrees)

z6

12

35

Z6

12

12

26

2O

15

Z6

20

15

Z6

15

26

15

90

90

45

45

45

5

45

45

45

20

20

20

90

9O

45

45

C omment s

Surface pressure = 10 mb

Surface pressure = 10 mb

Surface pressure --I0 mb

Surface pressure = i0 mb

Surface pressure = i0 mb

Surface pressure = 10 mb

Surface pressure --5 mb

Surface pressure = 5 mb

Surface pressure = 5 mb

Surfac_ pressure = 5 rnb

Surface pressure = 5 mb

Surface pressure = 5 mb

Surface pressure = 5 mb

Surface pressure = 5 mb

Surface pressure = 5 mb

Surface pressure --5 mb

Table 6-2. Mars entries.
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6. I. 3 Entry Induced Plasma

The plasma and collision frequencies at points along normal lines

from the vehicle surface were calculated using the HAC BLTNOS I0

program which calculates the inviscid flow-field about an axially-

symmetric blunted body at zero angle of attack. The program uses

the stream tube method, following lines of constant entropy from points

just back of the shock wave. Real gas effects are considered with all

the important species included. The gas is assumed to be in chemical

equilibrium at all points as a simplifying approximation.

For the vehicles studied thc desired quantities were analyzed

along normal lines spaced at 5° , ZO ° , 50 ° , and 80 ° measured from

the apex. However, only the 5° and 80 ° data was used (corresponding

to the forward and side looking antenna locations).

The electron concentrations at each point studied on a given

normal line were then computed using an accurate composition program

which accounts for contributions from many ionization reactions as

well as diminutions by two electron capture reactions. The electron

collision frequencies were computed with the use of several collision

cross-sections, to account for the several possible types of collision.

The results of these calculations were then used in the following

analysi s.

6. 1.4 EM Wave Propagation

For the type of vehicles studied the plasma sheath created in

front of the forward-looking antenna is very nearly homogeneous while

the sheath in front of the side-looking antenna is quite inhomogeneous.

In the first case the blackout can be computed using the boundary

value solution of a normally incident EM wave upon a homogeneous

plasma slab,

Attenuation (db) = 20 log

4K1/z
exp (ikoZ)

(K I/2+l)2ex p (ikoKl IZ Z)_(K IIZ_ l)exp(-iko KI IZZ )
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where Z is the plasma (shock layer) thickness and k is the free space
o

wave number. K is the complex dielectric constant of the plasma,

K = l -

(_op/_ )2

1 - i Vc/o_

where _ is the propagation frequency, v is the collision frequency,
c

and the plasma frequency, _p, is given by _ = 5.8 x 104 1/2n for
p e

an electron density n .
e

A more complicated calculation must be made to find the attenua-

tion for the inhomogeneous plasma. Here ne = he(Z), v = v (z), andC C

therefore, K = K(z) (where z is the distance normal to the surface within

the plasma). The solution of this problem for the arbitrary plasma

distribution encountered in reentry requires a machine solution of

the following equation,

dZE + k 2K (z) E 0.

dz2 o

This equation is valid only for normal incidence upon the plasma sheath

(the case studied).

6. 1.5 Analysis of Blackout Data

Signal attenuation calculations are presented and discussed in

this section as a function of the various parameters. A typical plot of

attenuation versus altitude is shown in Figure 6-4 for the Venus-Voyager

entry i (the entry profile shown in Figure 6-5), for the forward antenna

at 10 GHz. An important general feature of the problem is thus demon-

strated, namely, that the attenuation is characteristically nearly

always abrupt. The transition from essentially lossless transmission

toaveryhighlevel of attenuation occurs over a relatively short interval

in altitude and time. In the illustrative example it is interesting to

note that the peak value in excess of 100 db although it occurs during

only 20 percent of the altitude range or about 25 percent of the time
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(see Table 6-3). Nearly every case investigated showed a similar,

abrupt behavior.

The abruptness of the blackout phenomenon leads to the conclu-

sion that the establishment of a precise level of attenuation above which

the system is considered blacked-out is not of great significance. A
conservative criterion has been adopted, therefore, that a communica-
tions link will be considered to be blacked out whenever the attenuation

exceeds 3 db. In Figure 6-4, for example, the error introduced in the

blackout altitude band by assuming a 3 db cutoff when the system could

actually tolerate 30 db attenuation is about 15 percent. Such an error

is comparable with (if not substantially smaller than) the errors

arising from the use of the approximate model for the parametric
analysis, as will be noted subsequently.

It is clear that the precise level of attenuation at any instant is

of less interest than the overall time the system is blacked out and that

any alleviation of the problem must manifest itself by a reduction in

the total blackout time. A reduction in the degree of attenuation at any

instant means little if it does not significantly alter the time in blackout.

A knowledge of the altitude bounds of blackout is also of interest,

particularly when maneuvers are to be made during entry or when real

time measurements are to be made. (Suggested plans for a non-

survivable entry probe to measure the Martian atmosphere in 1969-

1971 can be expected to encounter such difficulties.) Thus the

parametric calculations of attenuation are presented in terms of the

blackout time relative to overall entry time (Tables 6-3 and 6-4), and

in terms of altitude bands, via bar graphs (Figures 6-6 through 6-15).

Blackout as a Function of Time

Table 6-3 lists the maximum total blackout times for the 16 entry

cases for Venus while Table 6-4 presents the 16 cases for Mars. The

entry times shown in both tables are the total entry times from the

start of the sensible atmosphere (500,000 feet for Venus, 700,000 feet

for Mars) to a limiting terminal velocity (i, 000 fps) or altitude

(5, 000 feet). The only altitude limited terminations occur in the Mars
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Vehicle

Hemispheric

Hemispheric

Hemispheric

Hemispheric

Hemispheric

Voyager

Voyager

Voyager

Voyager

Voyager

Voyager

Voyager

Voyager

Voyager

Voyager

Voyager

Entry
Case

10

Ii

Entry
Time

(sec.)

235

241

225

249

Z90

35

'18

'48

33

25

146

118

104

219

201

188

Table 6- 3.

Blackout

Forward Antenna

i GHz

(sec.)

100

106

120

160

Z06

IZ

12

15

16

17

45

60

58

67

108

132

i0 GHz

(sec.)

89

96

114

13Z

198

94 GHz

(sec.)

44

6Z

126

180

Time

10

10

14

Side Antenna

17

Z8

48

58

20

80

13Z

I GHz 10 GHz

(sec.) (sec.)

0 0

44 0

IZ0 88

14Z 128

206 198

0 20

6 16

0 Z8

6 20

14

14

17

19

17

54

60

60

74

120

138

12 17

0 76

17 76

40 61

0 if7

0 144

90 135

Maximum total time (seconds) in

blackout-Venus entries.

94 GHz

(sec.)

110

140

10

10

13

15

Z8

43

55

Z0

66

120
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Vehicle

Voyager

Voyager

Voyager

Voyager

Voyager

Voyager

Voyager

Voyager

Voyager

Voyager

Voyager

Voyager

Non - su rviv-

able entry
probe

Non-surviv-

able entry

probe
Non-surviv-

able entry
probe
Non-surviv-

able entry
probe

Entry
Case

1A

2A

3A

4A

5A

6A

1B

2B

3B

4B

5B

6B

Entry
Time

33

67

41

56

106

676

48

61

80

169

190

215

49

68

67

87

Blackout Time

Forward Antenna Side Antenna

1 GHz

(se_.)

23

30

32

34

35

32

73

70

60

2O

2O

23

25

10 GHz

(sec.)

22

3O

27

30

25

20

65

47

40

16

27

94 GHz

(sec.)

lO

22

12

20

15

25

1 GHz

(sec.)

3O

20

34

4O

33

38

4O

46

85

80

90

20

Z0

28

25

! 0 OHz

(sec.)

26

14

34

32

30

35

37

35

78

73

65

21

20

28

25

94 GHz

(sec.)

18

30

25

25

£D

20

53

35

20

14

20

Table 6-4. Maximum total time (seconds) in

blackout-Mars entries.
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l

Voyager entries: IA, 2A, 3A, 4A, 5A, iB, 2B, 3B. All the remaining

cases are velocity limited.

Frequency. In general, the blackout times vary inversely with

the frequency, as expected. This is not always the rule, however, as

seen in cases of Venus Voyager entry Ii and the non-survivable probe

entries i and 3. The plasma attentuation factor per unit of electrical

length is inversely proportional to the square of the frequency, but the

electrical path length through the plasma is directly proportional to

frequency. Under certain conditions this can lead to a reversal of the

general trend, as shown. Furthermore, although a useful improve-

ment often results from an increase in frequency, this is not always

the case, and the effect must be determined for the specific set of

mission parameters under consideration. No general rule of thumb

can be applied.

Antenna Location. Blackout is a definite function of the antenna

location, however, the dependency is not always clear a priori. The

reason for this fact is the offsetting effects of electron density and

thickness of the layer. In the case of the hemispheric vehicle, for

example, a large improvement in transmission is seen for the side

antenna over the forward antenna at 15,000 fps entry velocity (cases

i and 2), less improvement at 25,000 fps (cases 3 and 4) and nearly

none at 35,000 fps (case 5). Where the blackout time is decreased by

using the side looking antenna in the hemispheric vehicle the reverse

is clearly true for the Voyager type vehicle entering Venus. The for-

ward antenna location is also more desirable for the Voyager entry

into Mars, but to a lesser extent. It is apparent that, as in the case of

frequency selection, optimum antenna location can only be determined

for each specific mission and no general rule can be derived.

Entry Parameters. General rules can be formulated with refer-

ence to the entry parameters. Specifically, the relative blackout time,

i.e., the ratio of blackout time to entry time, increases with increas-

ing entry velocity and angle. Such is also the case with increasing

weight (variations with W/CDA correspond to a change in weight since

C D and A are fixed by the assumed vehicle geometry). It is apparent
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that the entry parameters can affect blackout substantially and must be

considered in any general evaluation of the problem. Although no

attempt is made to treat the effect of the atmospheric model parame-

trically, this factor can be of importance, as shown by a comparison

of cases 4A and IB (identical entry velocity and angle).

Blackout as a Function of Altitude

The bar graphs (Figures 6-6 through 6-15) show the maximum

altitude blackout bands for the 3 frequencies in each case studied.

Although band widths vary in the same qualitative manner as the black-

out times discussed above, several interesting points are noteworthy:

Altitude Limits. The low altitude limit where the vehicle comes

out of blackout is very insensitive to frequency changes in nearly all

cases, and, in lesser degree, to antenna location. This is due to the

rapid decrease in kinetic energy of the vehicle which results in a large

reduction in the attenuating properties of the plasma in a relatively

short altitude span. The change in plasma character is so rapid and

complete that all the frequencies appear to transmit at the same alti-

tude. This is not true at the high altitude limit where the velocity is

relatively constant and the collision frequency is small (the latter

increases almost exponentially with decreasing altitudes). The plasma

effect is almost regular in predictability; for frequencies below plasma

frequency there is good transmission, above there is evanescence, and

therefore attenuation is primarily a function of the increasing gas

den sity.

Entry Angle. Decreasing the entry angle tends to raise the low

altitude limit. This is due to the fact that as the angle decreases the

major portion of entry deceleration occurs at higher altitudes. The

kinetic energy of the vehicle is expended at these higher altitudes and

ionization in the sheath diminishes earlier. The entry angle has little

effect upon the high altitude limit since in most cases blackout occurs

before the start of deceleration so that the controlling entry parameter

is the initial entry velocity.
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Entry Velocity. Both the upper and lower altitude limits vary

directly with entry velocity in the expected manner, as shown by the

data.

The data presented here are intended to indicate, over a very

wide range of expected missions, the general trends characteristic of

atmospheric entry into the near planets. In this preliminary investi-

gation, no attempt has been made to cover in great detail or accuracy

any specific mission. At this state general parametric trends are of

more importance than design numbers which must be related to specific

configurations. However, the numbers presented maybe useful for

initial communications system evaluation for future missions.

6.2 REFINEMENTS IN THE THEORETICAL MODELS

The limitations of this study and those areas where improvement

is possible are indicated in this section.

6. 2. i Trajectory

The calculation of the entry trajectories was based on the follow-

ing assumptions :

• Exponential atmosphere

• Nonrotating planet and atmosphere

• Spherically symmetric planet

• Constant C D and L/D for a given trajectory

• Non-ablating vehicle, i.e., constant mass and area.

These approximations are certainly reasonable for the present purpose.

While refinements could be introduced in the last two items, they would

result in a significantly more complicated computational procedure.

This would not appear to be justified, particularly in view of the uncer-

tainties in available estimates of the scale height to be used in the

exponential atmo sphere.

There is a great deal of uncertainty in the available data on the

variation of pressure and temperature in the several planetary atmos-

pheres. The electron density for a given case is dependent on the free

stream pressure and temperature. Further, all the aerodynamic
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parameters as well as the electron density will depend on how accurately

the composition of the planetary atmosphere is known. These points

are discussed in more detail in connection with the flow field model.

6. Z. 2 Flow Field

The flow field analysis is based on the following assumptions:

The streamtube approximation assumes equilibrium

chemistry, inviscid flow field, zero angle of attack,

axisymmetric body, and pressure distribution on the

nose of the body obtained from Newtonian theory.

The boundary layer on the body is neglected since the

region of interest is very close to the stagnation region.

Only the inviscid shock layer outside the boundary

layer is investigated, as noted below.

An axisyrnmetric body shape is considered. The sur-

face is noncatalytic and uncooled and the material is

not ablating. Catalytic bodies will allow the atomic

species to recombine at the surface and this may tend

to decrease the electron density. A cooled body would

also decrease the electron concentration; however, if

the cooling is due to ablation, the ablating material

may change the electron density significantly. For

example, if the ablative material becomes ionized in

the shock layer and produces its own electrons, there

may be a net increase in electron density.

The effect of turbulence has been ignored. Since the

general subject of chemically reacting turbulent flow

is not clearly understood, it is very difficult to predict

the effect of this assumption on the plasma properties.

The shock layer is assumed to be inviscid and the chem-

ical state is in equilibrium. These assumptions are

valid over a relatively limited Mach number-altitude

range. The simplified order of magnitude analysis of

Probstein II was used to estimate these regimes for

entry into Venus and Mars, as shown in Figures 6-16

and 6-17.

Thermal radiation from the hot gases in the shock layer

has not been included in the parametric analysis. In

general, the gas radiation will cause a decrease in the

electron density due to the lower temperatures of the

shock layer.
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Figures 6-16 and 6-17 represent the flow regimes at the stagnation

point of a highly cooled hemispherical body. However_ the present configur-

ations are neither completely hemispherical nor are they highly cooled.

Also, the flow field analysis is not restricted to the stagnation point

region. Nevertheless, the results will indicate the desired trend since

the probes are at least hemispherically blunted and the flow field

analysis is extended not too far from the stagnation region (up to 80o).

The lines separating the boundary layer flow regime will tend to shift

a little for the uncooled case. The absence of cooling in the analysis

provides a conservative estimate of the electron density, in any event,

since it is quite likely that the actual probe will be cooled.

The assumption of equilibrium inviscid shock layer at the stag-

nation region will be valid in the lower altitude range (Boundary Layer

Regime) as indicated by the arrows. At higher altitudes, in the

Viscous Layer Regime, due to the increased rarefaction the shock

layer can no longer be considered inviscid and the chemical state

probably will be characterized by nonequilibrium effects. The present

flow field analysis will not be applicable in this region as well as the

other regions at higher altitudes. It is quite likely that the electron

density in the Viscous Layer Regime will be greater than the equilib-

rium value due to the higher temperatures associated with the non-

equilibrium effects in the shock layer. It is extremely difficult to

estimate the extent of the increase in electron density without carrying

out a nonequilibrium analysis. Such an analysis is beyond the scope

of the present program.

With higher altitudes and more rarefaction the chemical state of

the shock layer will be nearly frozen and the electron density will be

fairly close to the freestream value. The Merged Layer Regimes and

the Transition Regime are characterized by such frozen shock layers.

Thus for a probe entering into a planetary atmosphere the blackout

problem will probably first arise in the Viscous Layer Regime, and it

may extend through a major part of the Boundary Layer Regime. The
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altitude range in which such a problem arises, depends on the size of

the probe, its velocity and the characteristics of the atmosphere

through which the probe travels.

Figure 6-16 shows the flow regimes at the stagnation region of a

156 cm radius hemispherical body entering the atmosphere of Venus.

The atmosphere is the mean model for Venus given by NASA TM

X-53Z73, 1965. Figure 6-17 is drawn for a 200 cm radius body entering

Mars (5 mb atmosphere given in Mariner IV data).

The trajectories are at constant velocity for the altitudes of

interest and are in fact dependent only on the entry velocity. The alti-

tude at which blackout begins in shown for the three frequencies in

Figures 6-16 and 17. Note that the 100 GHz calculations are not affected

by the gasdynamic considerations. The worse case is shown in Fig-
ure 6-17 for 1 Ghz. The significance of this effect is that the onset of

blackout at 26,000 fps, for example, occurs in the vicinity of 440,000
feet a!titude_ rather than 575,000 feet, and the blackout time is reduced

by five seconds. In general, therefore, the correct fluid dy1_an_ic

model may cause the upper altitude limit to be lowered substantially,

as expected, however, the total blackout time will not be significantly

changed.

6. Z. 3 EM Wave Propagation

Signal loss calculations are based on the classical idealized

model 127 13 for the propagation of plane waves through stratified

media. These assumptions are marginal in several respects for the

present applications. The wave may not be plane, either due to the

type and location of the source relative to the plasma, or due to the

curvature of the boundaries or transverse variations in the plasma

properties. General solutions are not available to assess the adequacy

of the model. A full understanding of the effect of the plasma on

antenna performance, particularly in the near field, is not available.

This includes antenna impedance mismatch and pattern distortion,

leaky waves, and detailed near-field factors.
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6. 3 RECOMMENDATIONS FOR FUTURE ANALYSIS

As previously remarked, this study has purposely been made

broad, at the expense of detailed design data. The purpose has been

to establish the general effects of the parameters and to clarify the

areas for future analyses and research. These recommendations are

discussed below under the general categories of technology and sys-

tems studies. It should be remarked that any refined analysis of

planetary entry communications blackout must include very specific

design information. Particular characteristics of geometry, weight,
and antenna location affect blackout significantly. The same is true

for the entry or flight parameters so that detailed mission analyses

must be made. It is virtually impossible to extrapolate overall

theoretical or experimental results to account for small changes in

conditions without careful consideration of the appropriate parameters
involved.

6. 3. 1 Technology Studies

Our knowledge of the various atmospheric models is increasing

steadily. Although it should not be necessary to modify the trajectory

formulation used herein, this information is vital for the fluid dynamic

considerations. The study of planetary atmospheres is outside the

scope of this work so that the uncertainties involved must be treated in

an appropriate parametric manner.

The flow field analysis must be made for specific geometry, as

noted above. A continuum analysis is undoubtedly satisfactory although

considerable work remains to be done in both the boundary layer and

viscous layer regimes. (See Figures 6-16 and 6-17. Several of the

topics which require considerable study are: flow fields about actual

bodies including angle of attack; nonequilibrium, radiation, and abla-

tion effects; and turbulence.

Interactions between the plasma and the communications system

itself must be studied in greater detail. A major analytic problem

remains before predictions of wave propagation through the plasma

sheath can be considered reliable. A general description of the
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non-planar wave interaction with non-stratified inhomogeneous plasma

in the antenna's near field, a most formidible problem, is being worked
on but as yet is not within the state of the art. Because of this, two

important effects cannot be evaluated: the changes induced by the sheath

both on the antenna's input impedence and on the radiation pattern.

Depending on many factors these effects can have either little or a very
great influence on the blackout time. The inclusion of the true non-

plane wave and non-stratified plasma into the propagation calculation

must therefore be made for many of the vehicular shapes and antenna

locations expected. Meaningful laboratory and flight data would be
invaluable.

6. 3. 2 Systems Study of Blackout

The above discussion has dealt with improving the analytic capa-

bility to predict blackout. Some mention should be made here of the

possibility of alleviating it. Many schemes have been proposed which,

in theory, will work but as yet none have been made practical for the

blunted vehicle (the only type presently being considered for inter-

planetary missions). It appears unlikely that in the next decade there

will be any breakthrough which will provide a I00 percent cure. There

is hope, however, that by an optimum selection of all the parameters

mentioned here, as well as others such as antenna polarization and

angular orientation relative to the sheath, 12, 14 that the blackout can

be minimized. The present study is a first attempt at looking at this

overall system approach to the blackout problem.
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7. 0 RESEARCH SUBJECTS

There are a number of areas, both general and specific, where

research and development effort will be required if deep space com-

munications systems are to approach the full potential performance as

delimited by fundamental considerations. For the most part the need

for research in these areas has been mentioned or briefly discussed
in pertinent sections of this report with reference to specific techno-

logical limitations. A comprehensive list of these research subjects

is presented in summary form in Sections 7. i through 7. 5. Subjects
of special relevance to the definition and development of a deep space

communication system are indicated by an asterisk. These subjects
are then regrouped in Section 7. 6 into several programs related to the

three candidate system configurations.

7. I SYSTEM CONSIDERATIONS

_':'_Evaluationof Candidate System Configurations (Ref. Section 3. 4)

Realistic economic evaluations of the various candidate system

configurations based on specific system designs should be made.

These include studies of:

• Direct signal transmission from lander versus relay through
i

orbiting bus

• Direct optical signal return to multiple ground-based stations

(for weather diversity) versus relay through Earth satellite

station

• Direct microwave signal return to ground station versus

preferred optical configuration

_':_AComputer Program for Evaluating R & D Expenditures

(Ref. Section 7. 6)

A computer program is needed to determine the optimum distri-

bution among the various system parameters requiring advancement.
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_:_'Vehicle Control and Stability Requirements (Ref. Section 5. 3)

A consideration need be made of conflicting requirements on

vehicle control and stability among the various mission functions of

and methods for their resolution. These include time-sharing of

vehicle control and the use of an ancillary vehicle to meet the stringent

requirements for stability of an optical communication system.

;:-'Relation Between Transmitter Beamwidth and Point Accuracy

(Ref. Section 5. 3)

An analysis is required to determine the optimum relationship

between beamwidth and pointing accuracy based on maintenance of a

given average error rate and minimization of transmitted power as

criteria.

Bit Error Rates in Photon Limited Detection (Ref. Appendix F)

An experimental verification of bit error rates should be made

for various coding schemes for both coherent and noncoherent detec-

tion as the signal level approaches the photon limit. (This is discussed

further in Appendix F).

Signal Correlation Techniques (Ref. Section 2. 5)

An investigation of new signal processing techniques (such as

spatial filtering or associative processing) should be made for the

correlation of signals arriving with random phase due_ for example_

to atmospheric distortion effects.

;:_Information Correlation Techniques (Ref. Appendix E)

An investigation of signal processing techniques (including ana-

log and digital time delays and associative processing) need be made

for the correlation of wide-band signals collected over spatial dimen-

sions large with respect to c/B_ the propagation velocity over the

bandwidth. (This is discussed further in Appendix E).
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Comparison of Coherent versus Noncoherent Optical Systems

(Ref. Section 5. 4)

A detailed tradeoff study should be made between coherent and

noncoherent optical communication systems (in optimum configurations)

with reference to system complexity, reliability, and overall cost.

7. 2 RADIO FREQUENCY TECHNIQUES AND COMPONENTS

Analysis of Noise Correlation in Subapertures (Ref. Section 4. 5. 5}

Analysis has been carried out under the assumption that the

noise due to the sun in the phase-locked loops is statistically indepen-

dent although in actual practice there will be some correlation from

element to element. To assess the effect of the sun noise accurately,

the cross-correlation of the noise from element to element should be

taken into account.

_::Optimum Size and Arrangement of Antenna Array Elements

(Ref. Section 4. 5. 5)

Optimum design considerations should be studied with reference

to minimum signal-to-noise ratio for lock-on, atmospheric and signal

correlation lengths, scanning angle, and suppression of grating lobes.

_':`.PhaseCorrelation and Multiaperture Arrays (Ref. Section 4. 5. 5)

Development of techniques for correlation of the phase among the

various elements of a multiaperture array is required. These include

self-phasing techniques to provide self-steering and compensation for

atmospheric distortions. (See also Section 7. l_ Signal Correlation

Techniques. )

;:-'SubAperture Sidelobe Control (Ref. Section 4. 5. 5)

Two alternatives should be investigated for subaperture sidelobe

control: the first alternative is to provide a suitable illumination taper

across the subaperture, sufficient to give the desired sidelobe charac-

teristics; the second method is to employ a combination of subaperture

illumination taper and illumination taper across the composite aperture.
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;:-'Time-Delay Correlation over Large Apertures (Ref. Appendix E)

(See Section 7. i, Information Correlation Techniques. )

Subaperture Time Delay Compensation (Ref. Appendix E)

Detailed analysis will be required to determine the extent of

garble and modulation distortion introduced as a function of array

element dimension due to the distance travelled by an electromagnetic

wave during the bit duration.

Initial Phasing of Subapertures Usin_ Statistical Techniques

(Ref. Appendix E)

Statistical techniques of initial phase correlation such as intro-

ducing random phases into the signal line from each subaperture,

require additional study to determine the optimum method in terms of

cost, speed and effectiveness.

_:-'TheUse of a Computer for Control of a Large Ground Array

(Ref. Appendix E)

The design of a special purpose computer or_ possibly, use of

the capabilities inherent in a large general purpose computer for con-

trol of the entire multiaperture receiving system and for signal

processing warrants considerable additional study.

Precision Angle Trackin_ with a Multi-Element Array (Ref. Appendix E l

A detailed study should be made of precision angle tracking by

utilizing the various subapertures of a large array in either a phase

monopulse or in an interferometer configuration, taking into account

the specific characteristics and detailed design of the electronically-

scanned subapertur es.

_:-'Evaluation of Discrete Array Elements versus Subarrays

(Ref. Section 4. 5. 5)

A tradeoff study should be made with reference to performance

and cost of discrete array elements versus subarrays comprising

iterative subelements.
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_'::AntennaFeed and Scanning Techniques {Ref. Section 4. 5. 5}

An investigation and comparison of mechanical_ electrical_ and

hybrid methods is required for scanning of large ground arrays over

specified angular coverage.

","Electronic Phase Shifters {Ref. Section 4. 5. 51

Consideration should be given to an optimization of electronic

phase shifter characteristics by improvement of parameters such as

IRF loss and switching power at a sacrifice in switching time. In the

cases of diode, ferrite_ and plasma shifters_ further investigation

should be carried out in anticipation of future lower costs and improve-

ments in diodes and ferrite materials.

::-'Subarray Design (Ref. Section 4. 5. 5}

Development of electrical design and fabrication techniques for

the production of low-cost subarrays is needed.

_:"Reflectarray Antennas (Ref. Section 4. 5. 5)

Due to their inherent simplicity_ especially for large ground

arrays_ intensive design investigations of the application of the reflect-

array technique should be initiated.

_:'_Evaluation of Spacecraft Antenna Configurations {Ref. Section 4. 5.4}

A comparison is needed with reference to performance and bur-

den of the various approaches to spacecraft antenna design_ including

simple antennas_ discrete inflatable or erectable antennas_ and multi-

element phased arrays.

_':'_Self-Steering Array Techniques for Spacecraft Antennas

(Ref. Section 4. 5.4)

Development of self-steering array techniques applicable to light-

weight multiaperture_ distributed driv% spaceborne antennas is

needed.
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::_Phased-array Components for Spacecraft Antennas (Ref. Section 4.4)

Development of efficient, lightweight RF amplifiers or their

equivalent such as phase-locked solid-state oscillators is a critical need.

Millimeter and Submillimeter Power Sources (Ref. Section 4. i)

Research and development of millimeter- and submillimeter-wave

power sources is needed. These include solid-state transit-time

devices and harmonic generation techniques.

Millimeter and Submillimeter Detectors IRef. Section 4.21

Research and development of millimeter- and submillimeter-

wave detectors including balanced mixers is needed for frequencies
2

above 70 Ghz and for hot-carrier semi-conductor detectors

Low-Noise Preamplifiers IRef. Section 4. 31

Research should be directed toward cost reduction and mass pro-

duction techniques on cooled parametric amplifiers, and a search made

for a tunnel diode amplifier operating at cryogenic temperatures with

noise performance approaching that of the cooled paramp.

7. 3 OPTICAL TECHNIQUES AND COMPONENTS

':-'Basic Laser Mechanisms (Ref. Section 5. i)

Research into the detail mechanisms of existing lasers with

particular attention to the CO Z and other vibrational-level gas lasers

is needed. This is to be aimed at the discovery of improved energy

conversion mechanisms or of new laser materials.

;:-'New Laser Configurations {Ref. Section 5. I}

Research into new laser configurations (e. g., ring discharge,

folded lasers) and excitation mechanisms for potential reduction in size

and weight and increase in efficiency and reliability of lasers is needed.

Laser Thermal Control (Ref. Section 5. I)

An investigation of methods for the exclusion and removal of

waste energy from the laser cavity in order to reduce undesirable

thermal effects and increas_ reliability is needed.
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Laser Pumping (Ref. Section 5. l)

Development of techniques to restrict the generation of pump

energy to the effective laser pump bands and thus improve efficiency_

minimize thermal effects_ and extend lifetime is needed.

Sun-Pumping of Laser 3'4 iRef" Section 5. i}

Development of techniques for the collection_ and concentration

in the laser cavity_ of solar radiation within the laser pump bands of

interest_ and of methods for better matching of the laser pump bands

to the solar spectrum could be investigated.

Laser Frequency Doubling (Ref. Section 5. i)

An investigation of frequency doubling techniques could be made

with particular reference to doubling of the neodymium laser line from

I. 06 to 0.53 microns in order to provide a near optimum spectral

match to the S-20 photosurface.

#Laser Frecluency Control (Ref. Section 5. I)

An investigation and development of methods for stabilization

and tuning of laser frequencies including the generation of harmonic

5
and non-harmonic frequencies (e. g. _ utilizing parametric techniques )

is needed.

':"Optical Modulators IRef. Section 5. 2)

Research on non-linear optical materials (particularly for i0.6

microns) and on slow-wave structures suitable for the interaction of

the optical and modulating fields is needed.

_':_Intracavity Modulation Techniques IRef. Section 5.2)

Research and development of techniques for optical modulation

within the laser cavity to obtain higher modulation efficiencies asso-

ciated with multiple passes of the beam are needed.
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*Solid-State Photodetectors (Ref. Section 5. 5}

A comprehensive experimental and theoretical program to

determine and improve the characteristics (quantum efficiency_

internal gain_ impedance level_ response time_ operating conditions)

of solid-state detectors_ with particular reference to the far infrared

region of the optical spectrum is needed.

*Coherent Optical Receiver Techniclues (Ref. Section 5. 4. 1)

Development in general_ of coherent receiver techniques with

emphasis on frequency and phase control of local oscillator and on

methods for increasing the effective field of view (e. g._ detector

arrays and electronic tracking) in order to alleviate aperture restric-

tions imposed by pointing errors is needed. (See also below. )

*Electro-Optical Stabilization, Pointing, and Tracking (Ref. Section 5. 3)

An investigation of electro-optical techniques for fine pointing of

an optical transmitter in reference to a received (beacon) signal with

emphasis on the problems of alignment, lead angle, and self-calibration

is needed.

Electronically Steerable Optical Antenna (Ref. Section 5. 3)

An investigation of methods for inertialess steering of an optical

transmitter or receiver beam over angular dimensions of the order

of a degree or more is needed.

':-'OpticalPhased Array Techniques (Ref. Section 5.4. I)

.4 consideration of methods and techniques for phase correlation

of elements in an optical antenna array including self-phasing tech-

niques to counteract atmospheric distortion effects is needed. (See

also Signal Correlation Techniques under Section 7. i. )

':-'Large Coherent-Light Collectors (Ref. Section 5.4. i)

.4 study is needed of means, such as Fresnel-zone plates, for

_xploiting the monochromaticity of the laser signal to make possible

large, light-weight apertures having loose dimensional tolerance

requirements.
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Large Noncoherent-Light Collectors (Ref. Section 5. 4. 2)

A study of the practical limitations imposed on the fabrication

and use of large light-collecting apertures ("photon buckets") for

noncoherent receivers is needed.

7. 4 ATMOSPHERIC STUDIES

Atmospheric Transmission (Ref. Section 2. 4)

Measurements of atmospheric transmission as a function of zenith

angle are needed to determine more quantitatively:

• Attenuation for a variety of weather conditions in the

millimeter-wave region of the spectrum,

• Attenuation in the submillimeter-wave region and the

extreme infrared,

• Attenuation for a variety of weather conditions in the infra-

red and visible regions,

• Absorption fine structure in the infrared a_d visible particu-

larly in the vicinity of laser wavelengths of interest (e. g. ,

0. 50, 0. 53, 0.633, 0.6946, 0.84, 1.06, 2. 36, 3. 5, 9. 0,

i0. 6 microns).

Atmospheric Scattering (Ref. Section 2. 4)

Measurement of the angular distribution of scattered radiation is

needed as a function of meteorological conditions, altitude, and

frequency in:

• The micro- and millimeter-wave regions of the spectrum,

• The infrared and visible regions.

Analysis of multiple scattering effects at optical wavelengths 7

is also of interest.

_':_Atmospheric Distortion (Ref. Section 2. 5)

Measurements of wavefront deviations and quantitative determina-

tion of atmospheric correlation lengths as a function of weather condi-

tions, zenith angle, and frequency are needed:

• In the micro- and millimeter-wave portions of the spectrum 8,
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In the infrared (especially at I0.6 microns) and visible
regions 9, i0 (e.g., a multiaperture coherent receiver pro-

viding real-time data on variations in phase and amplitude
over the wavefront from a monochromatic source).

7. 5 PLASMA PROPAGATION

Methods for Alleviation of Communication Blackout (Ref. Section 6. 3)

A comparative study of the several existing proposals for alleviat-

ing communication blackout is needed. These include:

• Optimum design considerations for antenna location,

orientation, and polarization; signal power and frequency;

and aerodynamic shaping of vehicle;

• Material additives to reduce electron concentration;

• "Window" effect derived from application of a magnetic

field;

• The use of optical frequencies.

Ma_netoactive Effect (Ref. Section 6. 3)

A detailed analysis of the use of magnetic fields for the

elimination of blackout, including general systems and engineering

considerations is needed.

Communication Blackout during Blast-Off (Ref. Section 6. 31

An examination of the blackout problem during blastoff as it

differs from the problem during atmospheric entry is needed.
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7.6 RECOMMENDED RESEARCH PROGRAMS

The primary objective of the Advanced Deep Space Communication

Systems Study has been to define those areas of technology where

research effort can best be expended in order to meet deep space

communication needs in the period 1970 to 1980. As a result of this

study three primary system configurations have been selected as most

promising. These systems are:

• a direct microwave spacecraft-to-earth communication link

in the region of i to 5 GHz;

• a satellite relay configuration (one or at most two required}

utilizing a i0.6 micron optical link from spacecraft to

satellite with a noncritical microwave link for the short

range from satellite to earth;

• a direct optical link at 10.6 microns employing additional

ground stations to assure the necessary weather diversity.

It is the purpose of this section to re-state_ in an ordered

format_ those research projects which are necessary for further

system definition and for a realistic choice among the three candidates.

7.6. i Criteria for System Selection

While the present study has used data quantity and quality as

criteria for selection of the candidate systems_ taking only an implicit

account of costs_ the final choice must included explicit cost considera-

tions. Further analysis is required to establish costs on a quantitative

level. This will require more-detailed system designs including cost

considerations of the various components which the three candidate

systems comprise. Pertinent individual study topics (taken from

section 7. I through 7.4) have been organized below according to the

three configurations.

As a guide to the establishment of design goals for the individual

system components a computer program_ which is a modification of an

existing program_ is suggested. The existing program was developed

under NASA contract NAS 5-9637 between the Hughes Aircraft Company

and NASA-Goddard Space Flight Center. The computer program
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determines the optimum split of burden (cost or weight) in order to

achieve maximum deep space communication performance for a given

burden. Parameter values are calculated for the transmission equation

at a given range as a function of bit rate. As the bit rate increases the

parameter values increase until apreset parameter "stop" is encountered,

e.g. the maximum diameter allowed for a transmitting antenna. The

program calculates the means of achieving higher bit rates by increasing

the remaining parameters at a rate faster than that prior to the parame-

ter value "stop". This causes the total burden to increase at a rate

faster than before the stop. A "stop" represents a technological limit,
a limit which could be exceeded if research and development funds were

to be expended.
The basic programming of the computer has been completed.

The remaining effort would be a modification to provide quantitative

guidance for research fund expenditures. The key comparison to be

made is that of comparing the total burden of a given system with stops,
to the total burden (including R & D funds) of a system in which R & D

funds have improved the state of the art and which thus has no stops.
The results of this program can be used to provide a quantitative

basis for apportionment of the increased system performance required

among the various system parameters and to weigh the effort to be

expended on the study topics as listed below in outline form.

7.6. Z RF System, (I-5 GHz)

There are two major ways of implementing the high data rate

RF System (106 bits per second). One would utilize a high gain space-

craft antenna (45 to 50 db) with a single element receiving antenna

having a gain of 60-65db. The other antenna configuration would use a

35 to 40 db antenna in the spacecraft with a 70 to 75 db antenna on the

ground. Therefore additional study is required for both high gain

spacecraft antennas and high gain ground arrays. The study topics of

particular concern are summarized below.

• Comparison of various high-gain extensible spacecraft

antennas with lower-gain self-steering and phased-array

antennas.
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Study of ground antenna arrays including

• Optimum size and arrangement of antenna array elements
• Sub aperture sidelobe control

• Time delay correlation over large apertures

• The use of a computer for control of a large gound array

• Antenna feed and scan techniques

• Evaluation of descrete array elements versus subarrays

• Subarray design.

7.6.3 Optical Satellite-Relay System (i0.6 microns)

Optical communications techniques need further study in order

to develop reliable components and to establish realistic cost and

weight burdens.

For the Optical Satellite-Relay System the following topics need

consideration.

• Coherent optical receiver design

• Electro-optical stabilization_ pointing and tracking

• Solid state photo-detectors

• Laser techniques

• Basic mechanisms

• New configurations

• Frequency control

• Optical modulators and intracavity modulation techniques

• Acquisition and tracking

• Vehicle control and stability requirements

• Relation between transmitter beamwidth and pointing

accuracy

7. 6.4 Direct Optical System (10.6 microns)

For the direct optical system the study topics listed in 7.6.3

apply with the following additions:

• Correlation of signals from multiple optical apertures

• Atmospheric distortion
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APPENDIX A
SUN IN THE SIDELOBES

The contribution to the antenna temperature from noise inputs

through the pattern due to the temperature of the sun is given by

-'LTa 4w gTs d_2s
S

(A-l)

where

T

g

T
S

S

= antenna temperature

-- antenna gain in that portion of its pattern occupied by
the sun

= temperature of sun

-- solid angle of sun

This expression is completely general and gives the antenna

temperature regardless of what portion of the pattern is occupied by

the sun. It can be simplified for the purpose of studying effects of

noise through the sidelobes as follows: The assumption is made that

the gain of the pattern over the whole sun is equal to the gain of the

envelope of the sidelobes at the edge of the sun nearest the main beam

and this gain is designated go" (See Figure 4-10.) This brings the

variable out from under the integral sign and the integration becomes

simply the solid angle subtended by the sun, which is given by

s 4 s

where

@ -- angle subtended by the sun in radianss

Then Equation (A-l) becomes

2

1 ,T s Z @T'
4w go s 16 T

!

s go (A-2)
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where T' is always greater than Ta. To obtain an expression for T' in

terms customarily used to describe antenna patterns, let
!

go

go G
O

(A-3)

where

G o = peak gain of antenna

go = ratio of gain in the sidelobe region compared to the peak gain

In this case go' is restricted to the envelope of the sidelobes and then

go is the level of the envelope of the sidelobes normalized to a peak gain

of unity. The sidelobe level is ordinarily designated as being so many

db below the peak of the main beam and would be expressed in decibels

as

!

= go -G
g°db db °db

Since go' is less than G o (and ordinarily much smaller), go will take on

values from perhaps -20 db to a very large negative value, depending

on the size of the antenna, the distribution across the aperture, and the

magnitude of the angle between the main beam and the sun.

Rewriting Equation (A-3) as

!

go = go Go

and substituting into Equation (A-Z) gives

Z
@

T' - s G (A -4)
16 Ts go o

For large antennas (diameters of 1000 to 2000 feet), the 3-db

width of the mainbeam is about 1 or 2 minutes of arc and, in the direc-

tion away from the main beam, the peaks of the far out sidelobes ideally

diminish monotonically over the sun's diameter of 30 minutes of arc.
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Thus, the sidelobe level integrated or averaged over the sun's disc

would be smaller than g and consequently as indicated above T < T'
O a

(See Figure 4-i0.)

Since T' was set at 25°K, Equation (A-4) can be used to evaluate

go" This has been done for several different values of G and the results
O

are tabulated below. A gain, Go, of 81.2 db at 2.3 Ghz corresponds to a

large circular aperture, 2100 feet in diameter, with an efficiency, _,

of 55 percent.

G
o go

81. Z db

8O

70

6O

5O

-64. 2 db

-63

-53

-43

-33

Table _A-l. Evaluation of go for Different Values of G o

As an illustration of a technique that can be used to determine the

angular distance of closest approach that the sun may take to the main

beam without exceeding an antenna noise temperature of 25°K, large

circular apertures with illumination functions of the form (l-rZ) p may

be considered. The characteristics of this family of distributions are

reproduced in Table A-2 from Silver for convenience.

_:-'Seereference 24, Section 4.6.
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P
Half-power Position of First Sidelobe

Efficiency, _] Beamwidth, 0 First Zero (db below peak)

0 1.0

1 0.75

2 D.56

3 0. 44

4 0. 36

1.02 ×/D

1. 27

1. 47

i. 65

1.81

a

1.22 ?_/D

1.63

2.03

2.42

2.79

17.6 db

24. 6

30.6

36. 0

40.9

Table A-2. Characteristics of Circular Apertures

The efficiencies of these distributions are related to the

parameter p as follows:

l+2p
vI - 2

(I +p)

(A.-5)

The gain, G
O'

is then calculated from the conventional formula

Go _ 4wA __k2 (_.D)2 _]
(A-6)

where

D = diameter of the aperture

k = wavelength in the same units as D

The normalized patterns of these circular apertures are given by

where

g(u)
(P+12j Jp+l (u)}

(2) p+l

IvD
u = -- sin 0

k

2

(A-7)

(A,-8)

and 0 = angle off the mainbeam in radians
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1
1

I

1

I

1

By using the asymptotic representation for the Bessel Function

for large u and setting the cosine term equal to unity, an approximate

expression for the envelope of the far out sidelobes may be developed:

2
J (u) < -- u > p + 3p+l _u '

and

(A -9)

Since the right-hand term is always greater than the peaks of the

sidelobes in the normalized pattern, g(u), it is reasonable to equate the

right side with go' the term previously defined as the ratio of the

envelope of the sidelobe gain to peak gain. Then

= (p+l) ' +
go " ( P (A-IO)

4_

Solving Equation (A-10) for u gives

2

12p+ -u : _ +__!! (A-11)

[#To

Substituting for u from Equation (A-8) yields

sin 0
O

2
r- "-I

_p+,l,!2p+32_
• jt #-Vo

where 0 ° is the particular angle off the mainbeam specified by the

parameters of Equation (A-12).

A-5
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Since the antennas under discussion are of very high gain, the sidelobe

envelope will drop off to the necessary low level within a small

angle. Therefore the small angle approximation for sin @ may be used

(sin @ = 8). Also it will be convenient to use G in Equation (A-12)
X o

instead of the_ term; hence, the gain formula, Equation (A-6) is

rewritten as

_/2- X
v,i _ (A-I 3)

_rm
_/-Go

Equation (A-12) then becomes

2

0 = [(p+l)!] 2p+3 2 _- (A-14)

o /.j g-oj
Substituting from Equation (A-5) for _1 gives

2

@ = r(p+l)_] 2p+3 2__ v_+2p (A-15)

o L / ¢-G--o1_

With this expression it is possible to hold G o constant (and hence

its corresponding go ) and study the behavior of 0 o as the distribution

parameter, p, is varied. Increasing p results in lower efficiency,

thereby requiring a larger aperture to maintain the fixed G o . However,

increasing p reduces the sidelobe level and, hence, the angle O o, which

means that the main beam can look closer to the sun without exceeding

a noise temperature of 25°N. This reduction in 0 o can further be inter-

preted as a reduction in the number of clays that communications with

the deep space probe are degraded due to excess noise from the sun

entering through the near-in sidelobes or the main beam. A trade-off

is indicated of increased cost for the antenna versus a reduction in

"degraded time" for spacecraft to earth communications.
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To facilitate this trade-off study, a normalized effective diameter

of the sun is defined:

Effective diameter of sun

P = Optical diameter of sun (A-16)

Since the peak of the mainbeam of the antenna can come no closer to

the edge of the sun than 0 without have T' exceed Z5°K, the effective
o

radius of the sun can be said to be 0o plus the optical radius of the sun.

The effective diameter then becomes 2 @o plus the optical diameter.

If the optical diameter of the sun is taken 1/2 ° and @ is expressed in
o

degrees, Equation (A-16) becomes

l°
26 o+__

o 2
p = = 4@ +1

o o
1

2

(A-lV)

!

I

I

where p is a dimensionless quantity. _ or exai-_aple, a ......... p

simply means that the peak of the main beam must avoid a circular

area around the sun with a diameter three times the optical diameter

of the sun to assure T' -< Z5°K.

Trying to estimate the number of days that communications will

be degraded with a typical deep space probe is a difficult task to

accomplish with a high degree of accuracy. However, some information

is known about trajectories that JPL is contemplating for early fly-by

missions to Jupiter, and these will be used as a guide. These trajec-

tories are all long in terms of time and range from approximately

l-l/2 to 2-i/2 years in duration. In each case, the sun occults the

probe optically (or comes very near to occulting it) at least once, and

in some cases as many as three times during a single mission.

Twice will be assumed to be typical. Since the sun will have an

effective diameter p times its optical diameter, the number of times

that the probe is effectively occulted (and the duration of each such

occultation) will be a function of p and the plane of the trajectory in

reference to the ecliptic.
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The duration of an optical occultation in which the center of the

sun passes directly between the earth and probe can be estimated by

assuming that the probe is far out beyond the earth's orbit and moving

at a fairly slow rate in angular velocity. The velocity of the earth in

its orbit is then the prime determining factor, and occultation will

occur over an arc of the earth's orbit approximately equal to the arc

of the sun's diameter as seen from earth. (See Figure A-l.) Similarly,
the arc of the earth's orbit over which performance will be degraded

will be approximately equal to the angle subtended by the effective

diameter of the sun at the earth. Since the earth takes 365 days to
traverse 360° of arc it can, to a very close approximation, be said
that an effective diameter of the sun of 1° will cause an effective

occultation time of 1 day. A sample estimate of the total degra-
dation time for a typical mission as a function of p can be obtained by

drawing two arbitrary paths across a diagram of the sun and appropriate

circles representing successively larger normalized effective diame-

ters and then graphically determining effective occultation time, N,

for each value of p. This procedure was followed in Figure A-2.

The results of the integratioD are presented in Table A-3 below.

This set of data is empirically approximated by Equation (A-18) which
gives an indication of a more general form of the relation.

2
N = 0. 187 p - 0. 15p + 0. 213 (A-18)

Table A-3.

P N

1

Z

3

4

5

0.00

0.75

1.37

2.62

4.13

Duration of Effective Occultation.
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This equation was used to transform values of p calculated from

Equation (A-17) into values of N. A more general relationship could

be obtained by assuming some statistical distribution for the trajec-

tory traces across Figure A-2 and integrating to determine N as a

function of p. Time precluded an analysis of this type for this

report. N is plotted in Figure 4-12 versus the first sidelobe level

for antennas which have constant peak gains of 70 db and 80 db. It

is apparent that a small amount of tapering produces a rapid initial

decrease in N, but that the curve rapidly flattens out and successive

amounts of tapering are progressively less profitable.

It is of some interest to extend the analysis to determine the level
of the first sidelobe required to obtain an effective occultation time of

one day as a function of peak antenna gain. Setting N = 1 in equation

A-18 above, the value p = 2.5 is obtained. Referring to Figure 4-11,

it can be seen that antennas with peak gains of 80 db, 70 db, and 60 db

require first side levels of approximately 21 db, 25 db, and 41 db below

the peak, respectively. A smooth curve drawn through these three

points so determined is given in Figure A-3. The Figure serves to

illustrate the approximate nature of the relationship between peak

antenna gain and the first sidelobe level in db below the main beam for

the effective occultation time chosen. It should be observed again that

the curve flattens rapidly, and extremely low sidelobe levels are required

as the antenna gain decreases.
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APPENDIX B

COST ESTIMATE OF ANTENNA ARRAYS

The cost of a 70 and an 80-db gain earth station which consists of

an array of large paraboloids has been estimated. The estimation is

based on the experience that JPL has acquired in the operation of the

NASA/JPL deep space network. Several assumptions were made to

make this estimate. First, the gain of the array was assumed to be

proportional to the total area of the paraboloids times an efficiency

factor that would result from using a tapered illumination across the

array. This condition should hold as long as the individual paraboloids

are spaced far enough apart so that their mutual coupling is negligible.

The second assumption made was that the paraboloids would be suffi-

ciently randomly located in the aperture so that large grating lobes

will not exist. It is expected that the sidelobe level at some angles will

rise on a statistical basis because of this random location of elements

but time has again precluded a detailed investigation of this effect. A

third assumption made was that the array would not have to scan to

large angles; hence four or more stations may be needed to cover the

necessary solid angle.

The number of paraboloids required for the array is determined

as follows. The area required for a specified gain is given by the gain

formula rewritten as

G k2o

- (B-l)
A 4 WqNe

Where _]e, the element efficiency, must now be included.

The area of an individual array element is similarly related to its

gain and efficiency by the expression:

G k 2
e

A = (B -2)
e 4_ qe

The number of elements required, n, is obtained by dividing the

area of the total aperture by the area of the element:

f.

n- A (B-3)
e
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which becomes upon substitution from Equations (B-l) and (B-2)

G k z
o

n - 4 wq_]e _ Go (B-4)

G X 2 _ Ge
e

4Tr rl e

The number of elements required is thus related to the peak gain

of the array, Go; the efficiency of the aperture distribution across the

array, 13; and the element gain, G . The numbers of elements required
e

for a number of different situations have been determined. The results

are tabulated in Table B-i.

The expression developed by Potter et al. ::-"of JPL for station cost was

used to estimate the cost of the ground antenna for the various parame-

ters outlined in the table below. The expression was modified by the

elimination of all operating costs, and the comparison is based on

fabrication and installation costs only. (As with the JPL estimate --the

cost of the land required is not considered.) Tables B-2 and B-3

are taken from the JPL report. ':-"

First

Sidelobe

p Level

0 17.6 db

1 24.6

2 3O. 6

3 36.0

4 40.9

Note:

G O = 70 db G O = 80 db

Numbe r of

85 -foot

Paraboloids

Required

1.0 20.8

0.75 27.8

0.56 37. 2

0. 44 47.4

0. 36 57.9

Number of

21 0-foot

Par aboloid s

Required

Number of

85 -foot

Paraboloid s

Required

Number of

21 0-foot

Paraboloids

R equir ed

7.9

10.6

14.2

18.0

22.0

208

278

372

474

579

79

106

142

180

221

Fractional antennas are used for expediency in calculating costs.

Table B-I. Number of Elemental Paraboloids

Required for 70 and 80 db Gain

*See Reference 10, Section 4. 6.
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Master Cost Slave Cost':-"

Item
Nominal Minimal Nominal Minimal

Facilities

Electronic s

Operations

$2.5 x I06

$3. I x 106

$2. 6 x 106/yr

$2.5 x 106

$2.5 x 106

$2. 6 x 106/yr

$0. 24 x 106

$1. 80 x 106

$0. 61 x 106/yr

6
$0. 12 x 10

$0. 51 x 106

$0. 22 x 106/yr

':-'Adda fixed array-controller cost of $0.5 x 106 for n > 2. A learning curve of

0. 95 is applicable to the first slave and every doubling of the total number of

antennas thereafter. (Applies to facilities and electronics.)

Table B-2. Selected costs

R e sultant C omput ation

STATION COST C = (Cost of n antennas of Diam D

n x 0. 951°g2 n 2. 78= x 4. 37D )

+ (Cost of master electronics and facilities)

+ (n - l) 0.951°g2n x (Cost of slave electronics

and facilities)

Table B-3. Station costs

The cost of a single station as determined from the modified formula

of Table B-3 and Table B-2 is plotted in Figure 4-13; two curves result

as a function of first sidelobe level for each value of peak gain, one for

an array of 85-foot paraboloids and one for an array of Z10-foot parabo-

loids. It is apparent from this graph that cost for the 210-foot elements

starts higher and goes up faster as the first sidelobe is lowered than it

does for the 85-foot elements. It is also apparent that N, the number of

days of lost communication time, can be reduced from 4 days to 1 day for

an increase in cost of about i0 percent. However, beyond that point it

rapidly becomes more and more expensive to reduce N, with the result-

ing conclusion that a taper across the array aperture that produces first

sidelobe levels between -20 and -25 db is probably near optimum.
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APPENDIX C

SCANNING DEGRADATION EFFECTS IN PLANAR ARRAYS

A large multi-wavelength planar array of identical elements

located at points on a rectangular lattice structure lying in the x-y

plane can be considered. The condition that the array be large implies

that edge effects can be ignored. The interelement spacing in the x

direction can be denoted by dx, and that in the y direction dy, and the

array can be assumed to radiate into the half-space z > 0. All elements

are independently and identically fed by circuits which consist of a trans-

mission line of characteristic impedance, Z o, a generator with internal

impedance, Zg, and a phase shifter that is matched to the generator

impedanc e.

When the entire array is excited with a uniform or nearly uniform

amplitude and a progressive phase shift, a net reflected wave will, in

general, exist in each transmission line. This net reflected wave is

generated from the mismatch of the attached line element and/or the

_n11_1_n_ frnm external elements. The net reflected wave can be

represented by an element reflection coefficient F L (_, _), in which

and _ are the relative phase shifts between rows and columns of the

array lattice, respectively. In addition, each generator-phase-shifter

combination may be mismatched to the transmission line and introduce

a second reflection coefficient r .
g

Taking into account both types of reflections, it can be shown

that the peak gain of a large scanning array when the beam is scanned

to some angle @ from normal to the plane of the array is given by
O

G _ 4rr nd d cos O (C-l)

Imax X2 x y o 1 - I-'g

where n is the number of elements. To optimize the gain of a phased

array, let

r -- r = 0 (c-2)
g L
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so that

G _ 4w nd d cos O (C-3)

max k2 x y o

The gain degradation due to random phase errors, caused by

manufacturing tolerances and random mechanical distortion of the

':_and isaperture surface, has been analyzed statistically by Ruze

discussed in Section 4. 5.2. When the correlation interval, defined as

that distance "on average" at which the phase errors become essen-

tially independent, is large and where e -62, the mean square phase

deviation in radians, is small, the gain degradation can be described

as

or

G -62

G - e (C-4)
max

2

G = 4---F-w -6
k2 ndx dy cos 0o e (C-5)

where G is the antenna gain which accounts for aperture illumination

phase perturbations. Thus, optimum gain is achievable when the mean

square phase deviation is minimum and also by requiring that the

radiator and generator-phase-shifter elements in the individual feed

networks be matched as the beam is scanned. It also follows that the

matched, individual generator-phase-shifters can be replaced by a

matched corporate feed network to produce the same optimum gain

response with matched radiators.

From Equation (C-5) it can be observed that the array gain will

vary as the cosine of the scan angle, and for a very wide angle scan

range of ±70 degrees, the maximum reduction in gain is 4. 66 db.

However, in general, the array aperture will not be matched for all

::'See Reference ii, Section 4. 6.
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I

scan angles because F L # 0 over this range. This mismatch can be

taken into account by having r = 0 and Equation (C-I) then becomes
g

Gmax I ii lkZ ndx dy cos @o I - F L

Similarly equation (C-5) then becomes

(c-6)

I II2G - 4w nd d cos @ 1- r"L
k2 x y o

-6
e

(c-7)

This equation accounts for the gain degradation effects due to the

changes in the projected aperture, the impedance mismatch and the

random phase errors.

i

I

i

i

i

L

I

I
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APPENDIX D. HIGH GAIN, SELF-STEERING ANTENNA SYSTEM:
ENGINEERING MODEL FOR SATELLITE-EARTH

COMMUNICATIONS

An engineering model of a self-phasing antenna system for

satellite-earth communications is being designed and fabricated at the

Hughes Aircraft Company (NAS 5-i0101). It is scheduled for test,

evaluation, and delivery in 1967. This system, shown in block diagram

in Figure D-l, incorporates two channels, each with a 125-MHz RF

bandwidth, but for the sake of clarity, only one channel is illustrated

completely in the figure. The system is designed to receive at 8 GHz

and transmit at 7.3 GHz. The design is based on application to a

gravity-gradient oriented and stabilized satellite in synchronous orbit

with a conical coverage angle of _:15 degrees. This coverage allows

y ECEIVINGELEMENT

J HIGH
PASS

FILTER

+

I M,XERI- I LOCALr t°Sc'LL"T°'
,_ 8.625 GHz

WIDE I._AND

1450-80_)MHzI
+

TRIPLEXER 450- 575 MHz _ MIXER

LOCAL

NARROW
BAND-
PASS

QUADRUPLEXER

f l = 9 MHz
f2=15 MHz
f3=ll MHz
f4=I3MHz

TO OTHER
CHANNEL

244-;9 MHz

MIXER

i
TRAVELING.

WAVE

TUBE

_= , GHz_0 _

LOCAL

OSCILLATOR

MIXER _206 MHz

. r MIXER _ I=

J l/'212 MHz

IOSC,,L,TORIMHz

TRANSMITTING

ELEMENT

UPPER I

__ SIDE-BAND J

FILTER

._ MIXER

212 MHz

Figure D-I. High-gain, self-steering engineering model schematic.
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for uncertainties in the attitude of the spacecraft. The transmitting and

receiving portions will steer appropriate beams along arbitrary

directions within that cone. Two independent channels will be provided,

and four independent beams will be steered. The beam designations

and the frequency bands utilized are shown in Figure D-Z. Design

objectives include a minimum gain of 30 db for the receiving mode and

25 dbw effective radiated power for the transmitting mode.

This system is intended to serve as a communication link to relay

information transmitted from one station to another station via high-

gain beams. The positions of these beams are controlled by the phase

information obtained from CW pilot signals which are generated by

the communicating ground stations.

fl BEAM I_ /__ _fzBEAM ]]:

{ c'Ao'r,-, J UPLINKS ( 8.0 GHz)

OOWNLINKS ( 7.30 GHz)

I
GHZ 7.125

f2

7.250 7.350 7.475

BEAMS PILOT FREQUENCY

I 7.999 GHz
'11" 8.001
wr 8.003
1"o" 7.997

J

I !nl
7.825 7.950 8.050 8.175

Figure D-2. Synchronous altitude gravity-gradient 30-degree

cone of coverage.
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For the channel of the engineering model shown in Figure D-I,

a receiving pilot, a transmitting pilot, and amodulated signal are

received by the receiving element, passed through a high-pass filter,

down-converted to an intermediate frequency, and amplified by a wide-

band IF preamplifier. After preamplification, the information signal

and the pilots are separated by means of a triplexer filter. The pilots

are then down-converted to a second, lower, IF to allow utilization of

very narrow-band band-pass filters to establish a good signal-to-

noise ratio for the pilots. These band-pass filters comprise the quadru-

plexer which, in addition to limiting the noise bandwidth of the pilot

channels, serve to separate the pilot signals. After passing through

the quadruplexer, the pilot signals are up-converted to about 200 MHz

to enable these pilots to be mixed with the wide-band modulated signals

without overlap of the power spectra.

With reference to Figure D-l, the modulated signal, 450 to

575 MHz, passes from the triplexer to a wide-band mixer, and the

receiving pilot signal, 206 MHz, a1_u-1- passes to*_ .... _ixer. The

modulated signal is denoted by cos [_ _c + f(t)]t - _i _ and the pilot

_!pt is the carrier frequency, :_ issignal by cos - @i + _I' where _c p

the pilot frequency, f(t) is a modulating signal, _i is the phase angle
.th

of the received signal relative to an arbitrary reference for the i

element, and _ is the phase shift of the pilot signal relative to the

n_odulated signal, common for all elements. If these two signals are

mixed and the lower sideband retained, there results cos [_c - _ P

+ f(t)]t - 3_; therefore, it is seen that the phase of the resultant IF

signal is independent of the relative phase angle of the signals at the

elements. The signals from the output of these mixers, (one for each

element) which are in phase, are summed. At the point of summation,

the receiver array gain is realized for the information signals.

The signal is then amplified at IF, up-converted to RF, amplified

at RF, and then distributed to the final transmitting mixers. At these

mixers the transmitting pilot is mixed with the modulated signal and

the upper sideband is selected by the band-pass filter that follows.

A modulated signal is produced at a transmitting element; this signal
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has a phase angle which has the opposite sense from the phase angle

of the transmitting pilot at the corresponding receiving element. The

condition necessary to transmit the information from the antenna sys-

tem in the direction of the transmitting pilot is that the recovery and

transmitting arrays be scaled in wavelength.

Table D-I presents the electrical and physical characteristics of

the engineering model, and the projected characteristics for a flight

model of a similar system. Figure D-3 shows the configuration for

the engineering model. The flight model will be configured similarly.

ELEMENTS

RECEIVE

ELEMENTS

/ FRECEIVERN D

I I_J I / _ELECTRONICS

ELECTRONICS (COMMON CIRCUITRY)_ _ (64 MODULES)

TWT

NOTE: ELEMENTS ARE ON

8x8 GRID ON EACH
ANTENNA

Figure D-3. Engineering model in artist's conception.
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Engineering

Model

Number of elements (each for Z arrays)

Number of channels

R-f bandwidth (each channel)

Guard band (between channels)

Up-link frequencies (center) Channel A

Up-link frequencies (center) Channel B

Down-link frequencies (center) Channel A

Down-link frequencies (center) Channel B

64

2

125 MHz

100 MHz

7. 8875 GHz

8. 1125 GHz

7. 1875 GHz

7. 4125 GHz

Total cone angle of coverage

Element gain (minimum)

Array gain (minimum)

Polarization

Effective radiated power (objective)

30 °

11.6 db

29.8 db

Circular

25.0 :_ dbw

Ratio of pilot to modulated signal power when

125 MHz bandwidth is utilized

Received modulated signal level required for

19-db minimum SNR of transmitted signal
when total bandwidth is utilized

Power consumption: receiver

Power consumption: transmitter

Power consumption: Pilotprocessor

Power consumption: Attitude readout

Power consumption: Power supplies

Power consumption: Total prime power

Total weight

-13. 0 db

-115. 5 dbw

32.0 watts

(excluding local

oscillator)

201. I watts

(excluding local

oscillator)

108. 7 watts

0.9 watt

175 pounds

(excluding microwave

local oscillators and

all power supplies ex-

cept the traveling-wave

tube power supplies)

Projected

Flight
Mode I

64

2

125 MHz

100 MHz

7. 8875 GHz

8. 1125 GHz

7. 1875 GHz

7. 4125 GHz

30 °

11.6 db

29.8 db

Circular

33.0 dbw

-13.0 db

-115. 5 dbw

2 I. 5 watts

(including local

oscillator)

204. 5 watts

(including local

oscillator)

108, 7 watts

0. 9 watts

73.3 watts

408.9 watts

175 pounds

(including all power

supplies and local

oscillators)

_It is expected that 33 dbw will be obtained with the engineering model.

Table D-i. Characteristics of self-phasing

array - engineering model.
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APPENDIX E

TIME DELAY COMPENSATION FOR VERY

LARGE ANTENNA ARRAYS

INT ROD UC T ION

Some of the special problems of large ground arrays are discussed

in this appendix. The array is considered somewhat independently from

the remainder of a communication system in which it is a part. That is,

it is not the point of this appendix to prove the need for a large ground

antenna because this is the only way of achieving high bit rate data but

rather to assume a large antenna is needed and to discuss it in the con-

text of a high data rate system. Such an approach allows flexibility in

the examination of an antenna (or array of antennas) which is considerably

larger than any which are currently under construction. In this approach,

and in particular the discussion which follows, several choices are made

initially which are somewhat arbitrary and lead to certain limitations.

However the questions discussed and analyzed are certainly those which

must be considered when large antenna systems are constructed.

Initial System Design Parameters

The large antenna to be considered is taken to be square and

Z000 feet on a side. The bit rate assumed is 106 bits per seqond.

Assuming such a bit rate allows constraints in time delays, etc. , to be

set but also leads to performance limitations at very low bit rates.

A radio frequency of Z300 MHz is assumed.

The array is taken to be used primarily for data gathering with

functions such as command transmission and angle tracking relegated

to a secondary antenna system which can be of conventional size. (Addi-

tional investigation of methods for angle tracking is required as noted

in Section 7. 2. )
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This large antenna system will have many signal processing
features, for these and for other reasons discussed below a computer

(probably a general purpose computer) is assumed to be available. The

uses for this computer will be discussed in the appropriate sections.

Antenna System 1)esign Problems Considered

The primary problems considered in this Appendix are: 1) the

problem _t receiving, in phase, the energy impinging on the antenna.

I) the problem of compensating for the difference in time of arrival of

the wavefront to different points on the antenna array, and 3) the

expected relative performance of two methods of processing data from

the antennas.

In addition to the problems listed above, several design choices

are derived as a result of the basic assumptions such as the size of

these apertures and required degree of time correlation.

PRELIMINARY SYSTEM DESIGN

The nmjor design choices of the large aperture antenna are

documented in this section. These are a consequence of the size,

rate and radio frequency choices already noted.

bit

Subaperture Size

The problem of correcting the RF phases of signals received from

a number of distinct subapertures prior to summation is essentially a

classical antenna problem. By contrast, the correction of the differen-

tial time delays c_mstitutes an essentially distinct problem which can,

perhaps, best be considered as a communications system problem rather

titan an antenna problem. It will become apparent that some of the most

,,ttractive means ,,t compensating for the differential time delays in a

vL,ry large an1<,nna array will simultaneously provide an attractive

iL_t,ans of dealing with the need for appropriate RF phasing prior to

si_n,_l summation. The resulting ph,_sing techniques, while by no means

the only techniques that could be employed, may prove to be the most

I

I

I
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attractive means for dealing with the phasing problem. Here a case

is encountered in which solution of a system problem necessitates use

of a technique which simultaneously solves an entirely different problem

in one of the elements of the system (in this case, the antenna).

At this point it is appropriate to consider briefly the major options

available as to choice of subapertures. The choice is very wide and

ranges, in principle, all the way from individual dipole elements to

parabolic dishes with diameters of ZOO feet, or possibly more. In fact,

these two examples constitute extreme cases, both of which are

impractical for different reasons. The sheer number of individual

dipoles required for a very large total aperture is so great that any

attempt to treat each individual dipole as a separate receiving subsystem

or subaperture with its own provision for time delay compensation

becomes prohibitively complex and expensive. In addition, at the

frequencies of interest, even provision of a separate mixer and trans-

mission line for each dipole is unattractive by virtue of the very large

numbers of these elements required. Finally, the receiving cross

section of an individual dipole element will be too small to permit

reception of a reasonable amount of signal power; the signal-to-noi=e

ratio with which any signal processing equipment associated with the

individual aperture would have to function would be so small as to

require an impractical dynamic range of operation. In the same vein,

the signal-to-noise ratio would be far too small to consider, for

example, use of a separate phase-locked receiver at each such sub-

aperture. The significance of some of these comments will become

clearer as the design of a possible array is described in greater detail.

The use of parabolic dishes ZOO feet or more in diameter is also

unattractive by virtue of cost. Here is a situation in which the

cost of the aperture itself and the pointing and drive mechanism

associated therewith becomes exorbitantly large relative to the signal

processing equipment associated with the antenna.
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From the preceding discussion, it is apparent that an intermediate

_ubaperture is required. The obvious possibilities for the individual

subapertures are conventional gimbaled dishes of a suitable intermediate
size or some form of dipole or planar array. While conventional

_imbaled structures could be employed, the large numbers required

f,_r very large total receiving apertures again implies an excessive

,_st who, ll., comlt is t,_ken of the costs associated with the gimbal and

drive n_echani._l_l,_. '['his consideration indicates the desirability of

, Illployil,g an _l,_gil_b,l,'d subapcrturc. Such a subaperture will then be

n_ounted in an ¢':_._¢:l_ti;Llly horizontal position and, since it should be

large relative to the wavelength, will require sonde form of electronic

scanning. So l<mU _ts the size of the subaperture is not chosen to be

excessively large,, the be_n_width will not be so small that steering the

beam of the individual subaperture requires holding excessive tolerances.

Th¢_ bean_ steering will be accomplished by computer control.

The dcci.'iion that the preferred subaperture will be unginlbaled

i_l_plies that some loss in effective receiving cross section will occur

l()r sources that tire not located in the neighborhood of the zenith. For

,_ well designed subaperture, this reduction in aperture efficiency will

vary as the sine of the elevation angle. Thus, for a source 30 degrees

,_bove the horizon tt;e aperture efficiency will be approximately 3 db

lower than for the case when the source is at zenith. In spite of this

loss, the use of ungimb, led apertures should be sufficiently less

,:xpensive that overall cost consider::,ti,m should be expected to favor

this configurati¢m. Anc, ther point is th;_t horizontal subapertures can

be closely clust(,r_d wlth¢,ut interferin_ one wit:h another, whereas

large gimbaled :_lr_ctltres, it closely clustered, will block one another's

I'ictd of view _\,1,_ 1_ i,-,_ckin_ sources which are not close to zenith. Thus,

!:imbaled apertures require at least as extended an array as do hori-

zontal subapertures and are subject to an increased grating lobe problem

(see Section 4. _).



System Influences on Subaperture Size. The fact that subapertures are

ungimbaled and horizontally disposed in itself immediately imposes a

significant constraint. To appreciate this constraint, it will be con-

venient to suppose that the information received from the spacecraft

is coded in a digital format. This is not an essential assumption

inasmuch as an argument similar, but not identical, to that to follow

can be made for the case of any choice of modulation form. The fact

that digital data transmission will be employed to a very large extent

on future space missions makes the digital case preferred for illustra-

tive purposes.

To be useful, a very large antenna array should be usable at least

down to elevation angles as low as 30 degrees relative to the horizon.

At such low elevation angles, the signal received at the rear edge of the

aperture will lag that received at the front edge of the aperture by a

time approximately equal to the time required for an electromagnetic

wave to propagate a distance equal to the aperture dimension. The fact

that the RF phases of the signals received at various points on the

aperture will differ will be corrected by the means employed for elec-

tronic scanning. However, unless the aperture itself is designed to

incorporate pure time delay phase compensation, the corresponding

intelligence received at the far edge of the aperture will still lag that

received at the forward edge of the aperture by approximately the time

required for an electromagnetic wave to propagate across the aperture

dimension. When this propagation time is significant relative to the bit

length, the modulation received at the subaperture output will be dis-

torted in the same manner as that described earlier for the case of

signals received at individual subapertures. Since pure time delay

compensation within a subaperture is almost certainly not feasible on the

basis of cost and complexity, it follows that the maximum dimension

Elevation angles as low as 15 ° are useful but would be quite

difficult for a phased antenna to accomplish without serious sidelobe

problems.
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usable for a subaperture must be small relative to the equivalent

spatial length of one bit period; that is, the distance travelled by an

electromagnetic wave during the bit duration. Detailed analysis will

be required to determine the extent of garble and modulation distortion

introduced as a function of aperture dimension. A reasonable choice

of aperture dimension, would be such that the aperture dimension did
not exceed about one tenth of the spatial equivalent of a bit period at

the highest bit rate for which the receiving system is to be designed.

Beyond this point the system's self noise should become noticeable,
while with aperture transit times not exceeding one tenth of the bit

period the integrated effect over the aperture should be essentially

negligible.
The preceding consideration sets a maximum dimension for a

subapertureo Depending upon the particular choice of the maximum
bit rate for which the aperture is to be designed, this subaperture

dimension may or may not exceed the largest practical subaperture
dimension.

The spatial equivalent of one bit at a one megabit per second

data rate is very nearly 1000 feet. Employing a rule of thumb that
the dimension of the subaperture should not exceed approximately

one tenth of the spatial equivalent of a bit period indicates that the

individual subarrays should not be more than about I00 feet on a

side. Any method of combining elements or sub-subarrays which will

provide suitable electronic scanning will prove satisfactory so long
as this dimension is not exceeded. Moreover, a dimension of this

order seems a very reasonable basis for design since the tolerance

requirements for a subarray of this size can be met relatively

easily at DSIF frequencies. This fact can be appreciated by observing

the number of 85-foot paraboloids which have been built to function

at the DSIF frequencies and above, and by noting that the tolerances

for the planar structure will provide about a factor of two latitude

relative to those for the paraboloid. In practice, it may prove

convenient to fabricate each 100-foot subaperture of sub-subapertures
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of perhaps Z5 or 50 feet on a side. The decision implied here should

be made by the supplier and need not be cause for further concern at

this point.

In summary, a 100 foot subaperture constitutes a very reasonable

basis for design, and a subaperture of this size will be supposed

hereafter. This subaperture is certainly sufficiently small that

decorrelation caused by wavefront distortion due to tropospheric

and ionospheric inhomogeneities will not be a significant factor; this
fact is adequately established by extensive experience with large

dishes at these frequencies. Even with subapertures as large as
100 feet on a side, a total of 400 subapertures would be required for

a receiving system whose total array area is equivalent to that of a

single array Z000 feet on a side. This fact illustrates dramatically

the need for subaperture designs which minimize cost and thus

shows the economic infeasibility of clustering, say, 100-foot para-

boioids to achieve an cquiva!ent receiving area.

Subaperture Sidelobe Control. Still another factor to be considered in

subaperture design is the question as to whether or not precise

sidelobe control is required for the individual subaperture. In

general, it is to be expected that a suitable illumination taper will

be employed across the full composite aperture for sidelobe control.

However, two alternatives present themselves. The first alternative

is to provide a suitable illumination taper across the subaperture,

sufficient to provide the desired sidelobe characteristics. The

remaining possibility is to employ a combination of subaperture

illumination taper and illumination taper across the composite

aperture. While the question as to which of these techniques should

be employed constitutes an important matter for further investigation,

it will not be dwelt upon in this section because it is a matter of

concern primarily for the design of the full antenna array rather than

peculiar to the problem of time delay compensation across such a

large array. .As will be seen shortly, however, the two questions
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are not completely independent inasmuch as with some configurations

rather good control over the sidelobes of the individual subapertures

may prove necessary.

Phasing Subapertures

The heart of the carrier phasing problem lies in the means

employed for initial acquisition. This is the case because, once a

suitable composite carrier reference is available, the carriers

received from each individual subaperture can be compared against

the composite reference carrier and their phases adjusted accordingly.

Thus, once acquisition has been effected, any of'a number of

conventional closed-loop control techniques can be employed to assure

that the carriers are thereafter appropriately phased relative to one

another. In view of this fact, the means which can be employed for

initial carrier acquisition is considered now.

Three methods of phasing the individual subapertures into a

composite array are discussed. They are: I) the use of phase locked

receivers at each subarray Z) the use of statistical combinations of

the outputs of the a'rrays to obtain a reference signal and 3) the use

of a priori knowledge of the signal source to set the proper phase

in each subaperture.

Phase Locked Loop Phasing. The most straightforward means of

acquiring the carrier is to employ a separate low noise phase-locked

receiver for each individual subaperture. .Acquisition by this technique

implies that sufficient carrier power must be available in the output

from the subaperture to permit lock-on and this requirement, in turn,

may under some circumstances have significant implications for the

division of signal power between the carrier and the information

modulated onto it. Clearly, any signal power which must remain in

the carrier to facilitate initial acquisition is no longer available for

information transmission. In the extreme case situations are

conceivable in which the signal strength at the output of the subaperture

would be insufficient to permit carrier lock-on even if the full power

E-8



of the signal resided in the carrier. This might well be the case for

a space vehicle operating at such an extreme range that information

rates of only a few bits per second would be achievable even with the

full aperture of the composite array. It is also important to observe

that, when a separate phase-locked receiver is employed at each
subaperture for carrier acquisition, careful attention to sidelobe

control may be required for the individual subaperture. That is,

amplitude taper over the complete array may have very beneficial

effects for the array as a whole, but will do nothing to control the
sidelobes, and hence the received backlobe or sidelobe radiation in

the individual receivers. Since the lock-on characteristics of the

phase-locked receiver associated with the subaperture are

influenced only by the signal to spectral noise density in the sub-
aperture output, sidelobe control to assure a low level of backlobe and

sidelobe thermal radiation may well prove essential.
it is important to determine how much of a restriction the use

of a separate phase-locked receiver associated with the individual

subaperture imposes on the acquisition capability of the receiving

system. By means of an elementary argument it is possible to show

that for the high data rates of interest, carrier acquisition using the

signal received at each individual subaperture poses essentially no
restriction. In practice, a single phase-locked receiver located at
just one of the subapertures would suffice, with a coherent local

oscillator or carrier reference signal relayed to the other subapertures
for data frequency translation or demodulation. Since the cost of a

phase-locked receiver should be very small relative to that of the

individual subaperture and since the use of a separate phase-locked

receiver for each subaperture eliminates a number of other potential

problems this design has been chosen for present purposes.
Specifically suppose that information is transmitted in a PCM

format and that the PCM data are modulated onto the carrier using
biphase modulation. The modulation form assumed is residual-carrier

biphase. Hence the phase difference between a "0" and a "i" is
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somewhat less than a full 180 degrees with the consequence that a

small portion of the signal power remains in the carrier. For example,

if instead of modulating the carrier by ±90 degrees, the carrier phase

is modulated by +70 degrees, the residual power remaining in the

carrier will be about I0 percent of the total signal power. Leaving

10% of the total signal power in the carrier corresponds to a loss of

power in the modulation (information) of about 0. 5 db, which is

certainly small. Modulating with phases even closer to 90 degrees

(positive and negative) will, of course, leave even less power in the
carrier.

Consider now how much power must be left in the carrier for

successful acquisition. To place this question in proper perspective,

observe that there is little point in acquiring the carrier if the

signal-to-noise ratio at the output of the complete composite aperture
is so low as to result in an excessive bit error rate on the PCM data.

Thus, the signal-to-noise ratio at the output of the composite receiving

system is sufficient to assure an acceptably low bit error rate. A

bit error probability of 0. 01, which corresponds to an output signal-

to-noise ratio of about 7.4 db, is probably excessive for any application

in which a great deal of data is to be transmitted. A bit error

probability of 0. 001,which corresponds to an output signal-to-noise
ratio of about I0 db, is about the worst bit error probability one would

expect to tolerate for such high bit-rate data. At Signal-to-noise

ratios much larger than i0 db, the bit error probability becomes

almost vanishingly small. Thus, the output signal-to-noise ratio of

interest for PCM data reception for the complete receiving system

must be in excess of 7 db, with a value of 9 db as probably a more

realistic lower acceptable limit. This output signal-to-noise ratio is

to be measured ina bandwidth equal to one-half the bit rate in a
_.._

matched (integrate and dump) detector.

Analysis shows that the noise bandwidth of the complete

receiving system should be taken as one-half the bit rate, in the data

channel, when optimum demodulation, employing an integrate-and-

dump circuit, is used.
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Next consider the corresponding signal-to-noise ratio for the

demodulated data at the output of a phase-locked receiver associated

with a single subaperture. On taking the foregoing figure of 9 db as

representing the threshold condition, it is seen that the signal-to-noise

ratio of the data at the output of the subaperture receiver will be

reduced by a factor of 400, or Z6 db, since the composite array con-

tains some 400 subapertures. The resulting signal-to-noise ratio in

a 500 kHz (half the bit rate) bandwidth will thus be 9-26 = - 7 db.

Consider now the signal-to-noise ratio that would be obtained in the

carrier phase-locked loop if the signal power were equally divided

between the carrier and the modulation. The bandwidth of the

carrier phase-tracking loop should not exceed I0 Hz for a well-designed

receiver. Since the ratio between the output noise bandwidth of the

digital data (500 kHz) and this i0 Hz carrier loop bandwidth is 50,000,

or 47 db, it is seen that the -17 db signal-to-noise ratio at the output

of the phase-locked receiver in the information bandwidth corresponds

to an output signal-to-noise ratio from the phase-locked loop of at

least -3 - 17 + 47 = Z7 db. This signal-to-noise ratio in the phase-

locked loop bandwidth is far more than adequate for solid lock. In

fact, a 6 db signal-to-noise ratio in the loop noise bandwidth will

provide solid lock, while a 10 db signal-to-noise ratio will provide a

relatively clean reference carrier.

From these considerations, it follows that splitting the power

equally between the carrier and the modulation produces a signal-to-

noise ratio in the carrier phase-tracking more than Z0 db larger than

is required. This fact, in turn, implies that the percentage of the power

in the carrier can and should be reduced. If the carrier power is

reduced by another l0 db, the loss in signal-to-noise ratio in the

modulation output will be negligible relative to a pure biphase system,

in which the carrier is completely suppressed. At the same time,

sufficient excess power will remain in the carrier so that acquisition
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can be effected by a phase-locked receiver associated with a single

subaperture even for the case where the data rate is reduced to I00

kilobits per second, with threshold operation implied for the resultant

bit error rate at the output of the composite receiving system. For

that matter, by splitting the power half and half between the carrier

and the modulation, very solid carrier lock can be obtained at an

individual subaperture even for the case where the data rate is

reduced to I0 kilobits per second, with near-threshold bit error

rates at the output of the composite receiving system. These con-

siderations illustrate the fact that carrier acquisition by a phase-

locked receiver associated with each individual Subaperture will pose

no problems or limitations for carrier tracking even when the com-

posite receiving system is operated at only a i0 kilobit per second

data rate with threshold signal-to-noise ratios.

The preceding argument has made no attempt at great precision.

A more refined argument of the sort given above could be employed

to determine the lowest data rate at which the composite system could

be operated while still employing the signal received by only a single

subaperture for carrier acquisition. This refinement is unnecessary

at this point as our interest is primarily in high data rate deep space

communications, and low data rate deep space communications with

such a receiving system, which would correspond to exploration of

the outer reaches of the solar system, should be regarded as a fallout

capability at the present time.

Phasing Using Statistical Combinations. A recent investigation has

shown that, if each signal from a subaperture is split into two

signals whose phases differ by 180 degrees and if, for a total of n

subapertures, the Z n sums formed by choosing one of the two signals

from each subaperature and adding, in all possible ways, are formed,

at least one of the resulting 2 n signals will exhibit a carrier com-

ponent at least equivalent to that which would be obtained with a

E-12



composite aperture 40 percent as large as the composite formed from

the total of n subapertures, supposing perfect phasing For large

numbers of subapertures, say on the order of several hundred, the

resulting number of combinations clearly becomes so large as to

render this method of acquisition infeasible if an equivalent 40 percent
efficiency is to be achieved.

An alternative would consist of introducing phase shifts chosen

from a table of random numbers in the outputs of each of the sub-

apertures and adding the resulting signals. By repeating this process

onlya modestnumber of times, it seems likely that a carrier com-

ponent sufficient for acquisition could be achieved with relatively high
probability. This possibility requires further investigation. The

analysis should prove entirely straightforward inasmuch as the random

phase shifts introduced in each summand prior to summation convert

the problem into the classical problem of random flights (Rayleigh),
which is perhaps better known in contemporary circles as the random

walk problem. It is readily seen from this observation that the

resulting amplitude of the carrier component will have a Rayleigh
di st r ibut ion.

It is, perhaps, important to observe that the same technique
can be employed to any collection of the subapertures, rather than to

the totality thereof. By this means it may in some cases be feasible to

assure carrier lock-on without the complications inherent in handling
the signals from all the subapertures simultaneously for this purpose.

In this connection, the phase-splitting technique described previously

might prove feasible if a relatively small number of subapertures were

employed. It should also be observed that either the phase-splitting

or the random phase shift technique could be employed in time sequence

Half of the resulting Zn sum signals are redundant since to
each of the sum signals there corresponds another differing only in
sign. It follows from this observation that, in practice, only a subset
of 2n-i signals would be formed. For further information see
Reference i, page 250, and Reference 2.
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rather than simultaneously in parallel channels if the time available

for acquisition permitted. Sequential acquisition by this means would

reduce the amount of equipment required and hence would result in

very substantial cost savings. In any event, some care should be

exercised to avoid an acquisition scheme utilizing more subapertures

than are really required to provide an adequately clean carrier

reference signal since unnecessary proliferation can prove both

complex and costly.

Phasing Using A Priori Information. Acquisition by summing the

outputs of a number of the subapertures to obtain a reinforced carrier

component can, up to a certain point, be performed on the basis of

a priori knowledge. That is, up until the total dimension of the region

scanned by a collection of subapertures becomes so large that

decorrelation caused by atmospheric or ionospheric inhomogeneities

become significant, the phase corrections to be introduced in the

outputs of the individual subapertures can be determined on an

a priori basis from a knowledge of the angular position of the source.

The resulting phase corrections can then be made by means of variable

phase shifters prior to addition. As a practical matter, the number of

subapertures which are ganged in this fashion will be limited by the

phase stability of the various circuits and transmission lines and by

the accuracy with which the angular position of the source is known;

the phasing problem for a collection of subapertures is equivalent to

the beam-pointing problem for a single antenna whose dimension is

equal to the maximum separation between the subapertures in the group

employed in this way.

Time Delay Correlation Determination

Since a phase-locked receiver will be provided at each sub-

aperture, only video data need be transmitted from each subaperture

to a central point for time delay compensation and correlation to

enhance the system output signal-to-noise ratio. Whatever technique

is employed for data transmission, it will be necessary to provide
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some means for assuring adequate knowledge of the relative timing

of the various signals collected at the central station. There appear

to be two possibilities for obtaining this information. First, a priori

information can be employed. Secondly, relative timing data can be

obtained directly from the received signal. These two possibilities

will be discussed briefly in the next paragraphs.

A Priori Time Delay Correlation Determination. It should be observed

that the availab]e timing tolerance is of the order of 0. 1 microseconds

for the highest data rate (one megabit per second) for which the

receiving system is designed. Since the transmission lines employed

will be of the order of Z000 feet in length, maximum, it follows that

uncertainties in the delays introduced by these lines should be at

most a small fraction of this tolerance. In a similar vein, the

variations in time delay associated with both active and passive circuit

elements can be kept very small by careful design. A variation of at

most a few nanoseconds uu_1_ be _=_h_v_d.......... The only other source of

differential delay requiring consideration is the differing times at

which the received signal reaches the various subapertures, However,

since the relative geometry of the system will be known to a small

fraction of a foot and since the angular position of the source, when

tracking a deep space vehicle, will be known to a small fraction of

a milliradian, it is apparent that no timing errors which are significantly

large relative to the 0. 1 microsecond tolerance can arise due to this

cause. It thus appears that the relative timing of the signals available

at the outputs of the various transmission lines (400 in number)

associated with the individual subapertures will be known with more

than adequate accuracy to permit time delay compensation to the

requisite tolerances prior to summation. The shortcoming of the

a priori method of time delay compensation is it does not provide a
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means of removing variable time delays such as could be due to

atmospheric variations nor does it provide a means of removing slow
variations in "fixed" delays such as would be due to the transmission

lines. Clearly for optimum performance a means must be provided

for removing the variable time delay. This is discussed in the section
which follows.

Signal Information for Time Determination. An alternative to the use

of a priori data, as discussed above, is to derive the differential

timing reference information from the received signal itself. This can

be done relatively simply in either of two ways. The first way consists

of transmitting an auxiliary timing waveform, suitably coded, from the

spacecraft and extracting this waveform on the ground with a suitable

narrowband synchronizing system. For example, the timing infor-

mation could be imposed on the transmitted signal in the form of the

phases of one or more subcarriers. After demodulation of the received

signal to obtain the baseband structure, these individual subcarriers

can be phase-tracked in very narrowband circuits to recover the

required phase (and hence time) information. The alternative, and

esthetically somewhat more satisfactory, method is to take advantage

of the fact that timing information is already provided in the PCM data

transmission. That is, some means is usually provided in a PGM

system for achieving bit, word, and frame synchronization. By taking

account of the known characteristics of the synchronizing information

built into the PGM frame structure, very narrowband systems can

be employed to obtain synchronization on the output of each of the

individual receiving systems. These synchronizing systems must, of

necessity, be extremely narrowband because of the low signal-to-noise

ratios in the PGM data outputs of the individual receivers. This point

was discussed previously, where it was shown that the signal-to-noise

ratio in the output PCM data from a single receiver might be of the

order of -20 db when the overall system is near its threshold. The

fact that the signal-to-noise ratio in the individual PCM outputs is this

low implies the need for a relatively long correlation time in relation
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to the bit bit rate to achieve adequate synchronization. This long

correlation time may prove to be a distinct disadvantage. This fact,

in turn, renders transmission of a separate timing waveform, in the

form of, perhaps, sinusoidal subcarriers, more attractive. Once

timing information is provided in this form, however, it is no longer

necessary to provide the PCM data with built-in synchronizing signals

in the form of bit, word, or frame synchronizing patterns.

Clearly, the advantages and disadvantages for the derivation of

timing information using a priori information or signal derived

information require careful study and comparison to determine the

best. The a priori method seems at this time to be simplest and

adequate at the present writing and is assumed to be the method used.

The short discussion of the alternatives has been included to show

that, even if the a priori information were of insufficient accuracy,

the required timing information could be obtained from the received

signal itself. It is worthy of note that, even if special timing sub-

carriers were to be modulated onto the signai prior to transmission

from the spacecraft, relativelylittle power would have to be placed in

these subcarriers inasmuch as their known structure lends itself

readily to phase measurement with extremely narrowband processing

techniques. Additional equipment required for obtaining the requisite

timing information from the received signal would significantly increase

the cost and complexity of the composite receiving system. For this

reason, a preferred system design is to function on the basis of the

a priori differential timing data, which it appears can be obtained so

readily.

Signal Processing the Subarray Signals

Basic Requirements. This section is devoted to a discussion of

processing signals received from the various subapertures in such

a way as to compensate the differential delays and enhance the result-

ing signal-to-noise ratio at the output of the composite receiving system.
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In its most obvious form, this signal processing consists merely of

the introduction of suitable time delays at the outputs of the individual

transmission lines from the phase-locked receivers associated with

the individual subapertures and summation of the resulting time-

compensated signals. In addition to the compensation, provision must

be made for maintaining equal signal levels at the output of each

transmission line; that is, a suitable AGC must be provided. The

time delay compensation at the output of each transmission line will,

in general, consist of a fixed delay whose function is to equalize the

time delays for a source at some fixed position, preferably at zenith,

and a variable time delay mechanism. In the case where a priori

data is used for time delay compensation, the variable component of

time delay is controlled by the central control computer in such a

fashion as to account for path length differences resulting from depar-

ture by the central control computer in such a fashion as to account for

path length differences resulting from departure of the angular

position of the source from the reference position for which the lines

are equalized. Inthe case where the timing data arc obtained from

the received signal itself, the variable time delays are controlled in

closed loop fashion by comparing the relative epoch at the output of

each of the transmission lines with that at the output of a fixed

transmission line whose output is chosen as a timing reference for

the entire system. The timing errors are then corrected by a con-

ventional feedback technique. As indicated previously, this latter

means of compensating the time delays presentlyappears more complex.

In any event, the signal-to-noise ratio after summation of the n

(n = 400) time-compensated signals from the various transmission

lines will be improved by a factor of n which, in this case, implies

a Z6 db improvement.

Methods for Achieving Variable Time Delays. In order to time

correlate the signals from the 400 subapertures a suitable variable

time delay must be available. This delay may operate as an analog

time delay or as a digital time delay in that the circuitry required to
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convert from one form to another would be a relatively small part

of the overall antenna system cost. Described below are several

possible time delay implementations including lumped constant delays,

analog delays, dispersion delays, and digital shift register delays.

Lumped Constant Time Delay. The maximum linear dimension

over which the various subapertures are dispersed will be a few

thousand feet. Even in cases where the subapertures are not abutting,

the maximum delay variation necessary will be of the order of a very

few microseconds. For example, in the case where the subapertures

abut, so that the maximum dimension of the array is along the

diagonal of a square some 2000 feet on a side, the delay variation

required will not exceed ±3 microseconds, or atotal variation of

6 microseconds. In this connection it is important to note that only

the variation is significant and that absolute delays much larger can

be tolerated. A straightforward, although not very elegant, means

of implementing the required variable delay would be by means of

lumped constant delay lines of various lengths, all of which were

binary multiples of a suitable fraction of the allowed 0. I microsecond

delay compensation tolerance. These lines could be switched into

the desired configuration by a simple computer-controlled switching

matrix.

The lumped constant time delay method of implementing the

variable delay line would constitute rather a brute force solution.

It might also prove somewhat undesirable because of the transients

associated with reconfiguring the lines to vary the delay.

Analog Delay Techniques. For delays as small as ±3 micro-

seconds various analog delay techniques are directly applicable. For

example, a quartz acoustic delay line has been constructed the length

of whose delay path is mechanically variable. If purely electronic

control of the delay is desired, a ferrite line, in which the delay is

varied by variation of a magnetic field, can be employed. Should delays
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as large as 6 microseconds prove difficult to achieve with a con-

tinuously variable line, a tapped discrete line with taps at relatively

large increments, say of the order of one microsecond, could be

employed with a continuously variable line having a total variation of

one microsecond in series. With this configuration, the switching

transients would occur so infrequently as to be of very little concern.

Dispersive Time Delays. Dispersive delay lines have been built

for use in pulse compression radars. By choosing the delay-versus-

frequency slope of such lines to be sufficiently small and by modulating

the desired intelligence onto a variable frequency carrier, it is

possible to use a dispersive line as a continuously variable delay

device. If carriers in the UHF region are not objectionable, YIG

(yttrium iron garnet} lines can be used for this purpose. _A more

attractive kind of line, which will operate with a carrier frequency in

the intermediate frequency range, is the tapered metal strip delay line

such as has received considerable development attention at Hughes

Fulle rto n.

Digital Shift Register Time Delays. The preceding discussion

shows that the variable delays required for data time compensation

can be effected with devices which are well within the state of the

current circuit art. There is one other class of delay device which

looks so promising for this application that it deserves special

emphasis. The device in question is the digital shift register. Such

a shift register can be used as a variable delay device bythe expedient of

indexing a bit stream through the shift register with a varying clock

frequency to provide the requisite delay variation. _A delay line of

this sort is extremely attractive for the application contemplated

because it is simple, reliable, and has a delay which is readily con-

trolled to almost any required accuracy.
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Consider the requirements ona shift register delay line capable

of accepting a one megabit per second input and providing a controllable
delay variation over a range of six microseconds. If the data from
the individual phase-locked receivers is coded such that each binit

is approximately one bit of information, a single digital shift register

delay line will provide the required delay compensation at the output
of each receiver channel. If the data are transmitted to the central

station in analog form and then sampled and converted to digital

form in such a fashion as to preserve the amplitude distribution of
the receiver output (that is, if no attempt is made to make a zero-or-

one PCM bit decision at the individual receiver outputs), it will be

necessary either to use a separate line for each bit in the PCM word

or to operate the line at a clock rate higher by a factor equal to the
number of bits in the word, so that the entire bit stream can be

passed by a single shift register.

One point concerning the use of shift registers with variable

clock frequencies for variable delay lines warrants special notice°

The point in question is that the clock rate of the variable digital

delay line is nonsynchronous with respect to the incoming bit stream,
whether this bit stream be the bit-for-bit estimate of the PCM output

of the phase-locked receiver or a sampled and quantized version of the

analog output of the receiver. This must necessarily be the case

since the clock rate must be variable in order to provide a controllable

delay. This fact implies, in turn, that the digits in the input bit stream

will be sampled at varying positions within a bit, with the consequence

that the output of the digital delay line will not preserve precisely the

beginning and end of any particular bit. This, in turn, means that

a certain amount of noise will be introduced into the output signal

prior to combining it additively with the other delay-compensated

signals. Such noise will have the effect of degrading the operation of

the composite system. One way of circumventing this problem would

be to employ a clock frequency high relative to the incoming bit rate,

so that the leading and trailing edges of the individual bits would be
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preserved to an adequate degree of accuracy. Using the same rule

of thumb employed in selecting the maximum possible subaperture

size, we might require a minimum clock rate for the delay line at
least I0 times the bit rate of the incoming digital data. In view of the

possibility of a tolerance buildup problem among all the sources of a

delay error, a more likely requirement would be a clock frequency at
least Z0 times the incoming bit rate. Thus, for a one megabit per

second input to the line, the minimum clock frequency required might
be of the order of Z0 MHz.

Suppose, for illustrative purposes, that the line is designed for a
minimum clock frequency of Z0 MHz proposed above. .A reasonable
maximum bit rate for the line must be determined before sizing the

line to determine how many stages should be provided in the shift

register. A reasonable choice would seem to be to fix the upper clock

frequency at twice the minimum clock frequency; that is, to set the

upper clock rate at 40 MHz. With this choice of upper and lower
clock frequencies, the delay effected by the line will vary by a

factor of two. Since the line is to provide a total bit variation of

six microseconds, the maximum absolute delay which it must provide

will be IZ microseconds, and this delay will be realized at the Z0 MHz

clock frequeny. It follows from this observation that the shift register

must contain a total of IZ0 stages. This is not a particularly large

shift register by current standards, especially in view of the fact
that 100-stage shift registers are presently available on a single

silicon chip mounted in a TO-5 can. While it is true that these large

shift registers on a single chip are presently MOSFET (metal oxide
silicon field effect transistor) devices which will not presently operate

at clock frequencies higher than about two megabits per second, the

existence of these devices provides a basis for optimism that a device
with the desired characteristics should be available on a single silicon

chip within a few years at a modest price. In any event, such shift

registers can presently be constructed either with integrated (mono-

lithic) circuits or with discrete semiconductor components.
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been preserved in analog form up to and including summation to

enhance the system output signal-to-noise ratio, and that the resulting

PCM data were recovered following summation. An interesting

alternative is to digitize the output of the phase-locked receiver

associated with each individual subaperture prior to "summation" to

obtain an enhanced signal-to-noise ratio. The procedure in this

case would be as follows. The receiver output in the modulation

band would be passed through a decision circuit and converted into

a train of zeros and ones occurring at the PCM bit rate. This would

be done, for example, by sampling the sign of the output of an

integrate-and-dump filter suitably synchronized with the bit rate and

epoch at the output of each receiver. Recall that the PCM information

is transmitted in the form of direct carrier biphase {or, more properly,

biphase with residual carrier) modulation. The requisite bit synchron-

izing information can be obtained in any of several ways.

The advantage of making a l-0 decision at each subaperture

receiver is that only binary data need be transmitted to the central point.

This fact implies, for example, that the outputs of the various trans-

mission lines need not be provided with any form of automatic gain

control. Rather, the outputs can simply be hard limited to provide

waveforms which contain all the information transmitted from the

n_'ighborhood of the individual subapertures. Use of a hard limiter

implies that the zero-one information is encoded as a positive or

negative video voltage. Many other options are possible, including

modulating a carrier with the binary intelligence and suitably extract-

ing it at the central station. These factors will not be dwelt upon at

this time because they are matters of detail. The detail is important

in making a final design decision about various alternatives with

regard to the factors of cost and reliability, but is not fundamental to

showing the basic feasibility of a system of the sort here contemplated.

The detected output of a subarray receiver is referred to as

an "analog" signal even thoxlgh it may be a digital bit stream.
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Another possible alternative would be to parallel a number of

M©SFET shift registers with the sampling times of the inputs suitably

staggered and to combine the outputs through an appropriate logic

network. By such means, the variable delay line required could be

realized with relatively low speed MOSFET units, each of which would

require only a fraction as many stages as for the single shift register

device described previously. Even with the discrete component

implementation, the variable-delay shift register would be sufficiently

inexpensive relative to the total investment in one channel of the

multi-aperture receiving system so that cost should not be a

significant factor.

Digital implementations for the variable delay devices has been

discussed at some length since such an implementation may eventually

prove most convenient and economical for the intended application.

Such units tend to low cost production when large numbers of identical

units are required and are ideally suited for precision delay control.

A detailed design of the digital delay device required would

necessitate a more careful analysis of the minimum clock frequency

required and would also undoubtedly provide for some additional

margin in the total range of delay variability.

The discussion given should, however, be sufficient to establish

the feasibility and basic attractiveness of this method of implementing

the variable delay device.

Two Methods of Signal Processing. The signals from the individual

s_bapertures must be time delay compensated, phase adjusted, and

sm-nmed. Time delay compensation and phase summing have been

discussed in the previous subsections. This subsection documents

two means of performing the signal summation and analyzes the

relative performance expected from these two types of signal

summation.

Signal Processing Using Bit Decision at the Subaperture. Here-

tofore it has been supposed that the signals from each subarray have

E-23



Signal Processing Using Bit Decision After Summation of the

Subaperture Signals. A second option is available for transmitting the

information received at the individual subapertures to a common point

in digital form. This option consists merely of sampling the analog

output of the phase detector from which the noise-corrupted PCM infor-

mation is obtained and quantizing this information with an analog-to-

digital converter. This technique preserves the basic advantage of

digital data transmission to the central point, but requires additional

equipment. At the central station, the resulting digital data can be

converted back into analog form prior to summation. Alternatively,

provided that provision is made for synchronizing the words received

from the various transmission lines properly, the data received from

the various receivers can be added directly in a digital format. After

addition it can, if desired, be converted back to an analog signal which

would be used to drive a conventional PCM synchronizing and demodu-

lation system. This made of operation supposes, of course, that the

time delays are compensated prior to the signal auu1_iu,1,1-1"_"....._i_.,_-_ t_

addition be performed in digital or analog form.

Whether the PCM data are transmitted in the form of a single

binit for each received bit, from each receiver, or in the form of a

PCM word obtained by sampling and quantizing the analog output of the

individual receiver, one means of implementing the necessary digital

time compensation, addition for signal-to-noise enhancement, and PCM

synchronization and demodulation deserves special consideration.

Inasmuch as central computer should be employed for control of the

entire multi-aperture receiving system, it seems reasonable to con-

sider employing this central control computer to perform the signal

processing functions required to demodulate and channelize PCM data.

The advantages of digital data handling are so great and the number of

inputs sufficiently large that the design of a special purpose computer

for performing these functions may well prove to be the preferred

implementation for all the signal-processing functions. This possibility

warrants considerable additional study.
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Signal Processing Analysis

Introduction. For the most part, the performance implications of

the multi-aperture receiving system described in the preceding sub-

s_ction have been readily apparent and have been noted explicitly in

the course of the preceding discussion. The one aspect of system

performance which requires a somewhat more detailed analysis for an

adequate preliminary understanding concerns the possible performance

differences between the two essentially distinct ways of handling the

data obtained from the phase-locked receivers associated with the

individual subapertures. The first way of handling such data consists

of transmitting these data to a central station in analog form and

simply summing them directly, after correcting the differential time

delays, to enhance the output signal-to-noise ratio. The second

technique consists of providing a suitable PCM bit synchronizing

system at the outlying receiver site and making a bit-for-bit decision

as to whether the received PCM bit is a "0" or a "I" at the receiver

output. The former case will be refered to as digitizing after

correlation and the latter case as digitizing prior to correlation.

While it is obvious that digitizing prior to correlation cannot

produce performance as good as that obtained by digitizing after

correlation, the amount of degradation which results from digitizing

before correlation is not obvious without some analysis. In view of the

importance attached to the pre-digitizing, or digitizing prior to

correlation, it seems worthwhile to provide a comparative analysis of

the two techniques at this point. The discussion accompanying the

analysis will also serve to clarify some of the implied details of

implementation, which were not specifically indicated in the preceding

subsection.

Consider now the modulation output from one of the phase-locked

receivers. The modulation format employed is biphase with residual

carrier. In addition, a separate timing waveform may be transmitted

from the space vehicle to provide a timing reference and bit synchron-

ization signal. In any case, the amount of power required for the
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carrier and the timing signal will be so small as to be entirely neglig-

ible relative to that remaining in the modulation. Accordingly_ to

simplify the analysis the residual carrier and the timing signal powers

may be ignored and the received signal is assumed to be purely

biphase modulated. The modification to account for the presence of

the carrier and the timing signal is essentially trivial and amounts to

little more than a notational complication.

As seen at the input to the phase detector in the phase-locked

receiver, the received signal and noise may be represented in the form

I(t) = ±A cos _ot + Nl(t ) cos _0ot + Nz(t ) sin _0ot (i)

Here the plus or minus sign represents the biphase modulation.

The first term is the signal component of the IF input to the phase

detector. The last terms are noise terms written in a form which dis-

plays the in-phase and quadrature components. The (one-sided)

spectral density of the IF noise is taken to be 6N. With the in-phase

and quadrature representation chosen for the noise, Nl(t) and Nz(t )

are statistically independent stationary Gaussian processes with low-

pass spectra whose density (one-sided) is 26N; the mean values of N 1

and N 2 are zero.

-','-'Ifthe maximum phase excursion for the biphase modulation with

residual carrier is +_, the quantity A in Equation 1 below should be

replaced by A sin _. Alternatively, Equation l can be used unchanged

provided that AZ/Z is interpreted as the power in the PCM modulation

rather than as the total power of the angle-modulated signal.

;:-_;:;Inreferring to one-sided spectral densities only positive fre-

quencies are considered. The assumption that the IF noise spectrum

is flat is equivalent to the requirement that the IF bandwidth should be

sufficiently wide to pass the biphase modulation without significant dis-

tortion; this is a reasonable requirement.
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The action of the phase detector can be viewed as multiplying

I(t) by Z cos _0 t and taking the low-pass component of the product. In
this way the modulation output is obtained as a signal proportional to

the quantity V(t) given by

V(t) = ±A + Nl(t } (Z)

This output is then passed through an appropriate low-pass filter,

after which it is either I) transmitted to the central station in analog

form for delay compensation and summation or 2) sampled and a decision

made as to whether the received PCM bit was a "0" or a "I."

Digitizing Prior to Correlation. Consider now the case in which the

receiver outputs are individually digitized prior to correlation. The

optimum output filter will be that which maximizes the output signal-

to-noise ratio at the time when the zero-one bit decision is made.

With the white noise characteristics here assumed, this optimum

(or matched) output filter takes the form of an integrate-and-dump

circuit synchronized with the bit period. That is, the modulation

output of the phase detector at the beginning of a bit period is gated

into an integrating circuit and integrated over the duration of this

period. At the end of the period, the voltage across the integrator is

read and the integrator is reset to zero. The operation is then

repeated for the succeeding bit. A decision as to whether the input bit

was a "0" or a "l" is made on the basis of the polarity of the signal

read out of the integrate and-dump circuit at the end of the bit period.

If, for example, a bit starts at t = 0 and the output of the

integrate-and-dump period is normalized so that it preserves DC

levels, its action may be represented by the operator

T

i
J ( )dt,

T
0
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where T is the bit period. On applying this operator to the modulation

output of the phase detector given by Equation Z, the following is

obtained for the output of the integrate-and-dump circuit at the end of

the bit period

T

'SoD = +A +_- N 1 (t)dt

= +A+X,

(3)

where, as the integral of a zero-mean Gaussian process, the random

variable X has a Gaussian distribution with zero mean.

To calculate the variance of the noise output, X, note that a

simple calculation shows that the integrate-and-dump circuit, con-

sidered as a frequency filter, has a noise bandwidth, in cps, given by

I/(ZT) = F/Z, where F is the bit rate of the received PCM data. Since

the frequency characteristic of the integrate-and-dump circuit with

the normalizing factor I/T is unity at zero frequency, it follows that

output noise power, or equivalently the variance of X, may be cal-

culated by merely multiplying the spectral density of Nl(t) by the noise

bandwidth of the integrate-and-dump circuit. Since the spectral density

of Nl(t ) is 2 6N, the output noise power u2(X), from the integrate-and-

dump circuit is given by

Z (___)I _ 6N - 6NF (4)(X) : (Z6 N) T

On writing z for the output signal-to-noise ratio from the

integrate-and-dump circuit,

A Z A 2

z : CZ(X) _ bN F (5)

This will be used shortly.
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It is also of interest to observe that z can be written in the

alternative form

z - A2/2 (6)
6N F/Z

This alternative form for the output signal-to-noise ratio is of

some interest as it expresses this ratio in terms of an equivalent

signal-to-noise ratio in an appropriate noise bandwidth referred to the

intermediate frequency. To see that this is the case, observe that,

_ccording to Equation l, the signal power at IF is given by A2/2 and

that the spectral density of the IF noise is 5N. With the interpretation

o_ A2/2 as the IF signal power, it follows that F/2 is to be interpreted

as the equivalent IF noise bandwidth for the combination of the opera-

tions of phase detection with respect to the carrier reference and the

integrate-and-dump filtering. This interpretation was the basis for

the somewhat imprecise statement made in the last subsection to the

effect that the output noise bandwidth of the integrate-and-dump circuit

in the receiving system was one-half the bit rate, or 500 kilocycles

per second for the case discussed there.

The interpretation of Equation 6 given in the last paragraph is

sufficiently interesting to warrant further interpretation on physical

grounds. The action of the phase detector is to suppress the component

of the noise in quadrature with the carrier reference signal and to fold

the spectrum of the in-phase component of noise about its center

frequency. The result is that the spectrum of the low-pass noise at

the phase detector output has, on the one hand, its spectral density

halved by suppression of the quadrature component while, on the other

hand, the spectral density is doubled by the spectral folding action. It

follows from this combination of suppression and folding that the one-

sided low-pass noise output spectral density from the phase detector is

equal to the spectral density of the original IF noise except for such

s_ale-factor changes as are applied to the signal and the noise alike in
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the demodulation process; the detailed derivation given previously
takes specific account of these common scale-factor changes. The

important point to remember is that the output signal-to-noise ratio

obtained from the combination of the phase detector and the integrate-

and-dump filter (read at the sampling time) is equivalent to the IF

signal-to-noise ratio corresponding to a noise bandwidth equal to one-

half of the bit rate.

Since the PCM data is of concern here, the most significant

error statistic is not output signal-to-noise but, rather, bit error

probability. This is a doubly significant parameter inasmuch as the

two distinct methods of processing the received signal data, digitizing

prior to correlation and digitizing after correlation, have somewhat

different noise characteristics. This fact renders a comparison on

the basis of final output signal-to-noise ratios rather meaningless.

Fortunately, a direct comparison on the basis of final output bit error

probability is fessible. The derivation of suitable expressions for

effecting a comparison between the two methods is the major purpose

of this subsection.

In the course of the derivations to follow, it will be convenient
! |

to use the symbol PI I for the probability of the event described within

the braces.

At a first step, an expression is derived for the probability of a

correct bit decision at the output of the integrate-and-dump filter when

the digitizing prior to correlation technique is employed. Since the

problem is completely symmetrical with respect to O's and l's, there

is no loss of generality in taking the sign before A in Equation 1 to be

positive. With this convention and by using the symmetry of the noise

distribution with respect to its zero mean,

correct decision is:

the probability, p, of a

< A -X
(7)
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Now -X/¢(X) is a normally distributed random variable with mean zero

and variance unity. From this observation and Equation 7 it follows

that :

p • (8/

where cb(x) is the cumulative distribution function for a Gaussian

process with zero mean and unit variance, and is given explicitly by

X

1 f -u2/2
• (x) - 2x/_ -co e du (9)

Equation 8 gives the probability of a correct bit decision. It is

important to observe that the derivation leading to this equation is

dependent only on the signal-to-noise ratio at the time the modulation

output of the phase-locked receiver is sampled; that is, it is independent

of the particular output filter employed so long as the output signal-

to-noise ratio is measured correctly. The integrate-and-dump filter

is that filter which will maximize the output signal-to-noise ratio, but

not the only output filter which could be used. The derivation of the

output signal-to-noise ratio for the integrate-and-dump filter was

included to provide a basis for assessing the optimum performance

that can be expected from the system. It will be seen that, so long as

the same method of making a zero-one bit decision is employed for the

digitize-prior-to-correlation system and the digitize-after-correlation

system, the relative performance will be independent of the specific

output filter chosen; that is, so long as the same output filter and

sampling time are employed in the two cases, the comparison will

remain valid.

From Equation 8, the probability of bit error, q = l-p, may be

calculated with the aid of a table of the cumulative Gaussian distribu-

tion. The results of such a calculation, which may be found in various

places in the published literature, are shown in Figure E-1 on the

following page.
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Figure E-I.
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The probability of making a correct bit decision on the basis of

the digitized outputs of all the n receivers will now be made. Here it
is assumed that the PCM bit decisions from the various receivers have

been appropriately time compensated, so that the data on which the
final bit decision are to be based all apply to the same bit. For this

purpose, let S be the number of correct bit decisions out of the totaln
of n decisions made at the individual receivers. The decisions made

at the individual receivers will be statistically independent, since the
receiver noise will be independent from one receiver to another and

will have common probabilities, p, given by Equation 8. The distribu-

tion of S will clearly be a binomial distribution corresponding to nn
independent trials of an event of probability p. The decision logic will

consist merely of deciding that the received bit was a "i" if more than

half of the n bits received from the individual phase-locked receivers

were taken to be l's, and to be a "0" in the contrary case. In the case

where nis even, the decision can be made arbitrarily when precisely
half of the received bits were taken to be l's. Since this will be an

event of small probability, the specific choice made for the half-and-

half case will not be very important. Since p is the probability of a

correct bit decision at the output of an individual phase-locked receiver,

the probability that the final zero-or-one decision is correct, when

made by the majority vote procedure here indicated, will be given

explicitly by

= pkP1 _ nCk (1 _p)n-k (10)

k> 2

where riCk is the binomial coefficient (the number of combinations of

nthings taken k at atime). For present purposes, the more

significant quantity is the bit error probability, QI' given by

Q1 = 1 - P1 " (11)
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Digitizing After Correlation. To determine the corresponding bit

error probability for the system in which the data are digitized after

correlation, it is only necessary to observe that the effect of adding

the time-compensated outputs of the n transmission lines (with equal

gains), filtering, and making a zero-or-one bit decision using the

same kind of filter as was supposed previously for the pre-digitizing

case is equivalent to increasing the signal-to-noise ratio, z, in

Equation 8 by a factor of n. This is the case because the signal

components of the outputs from the various receivers are added

coherently while the noise components are added incoherently. The

fact that this results in an effective increase in signal-to-noise ratio,

a factor equal to the number of subapertures employed was used in an

essential way in the last subsection and, in fact, constitutes the basis

for the entire system design. The probability of bit error for the

system which digitizes after correlation is given as

Z,

P2 = _ (x/ nz), (lZ)

where z is the output signal-to-noise ratio obtained when a zero-one

bit decision is made at the output of an individual phase-locked receiver

associated with a single subaperture. The corresponding bit error

probability, QZ' is given by

Q2 = 1 - P2 " (13)

Comparison of the Two Correlation Methods. In principle, the

expressions derived for Q1 and QZ provide a direct means of compar-

ing the performance of the two signal-processing techniques for any

value of single-receiver output signal-to-noise ratio, z. Such a

comparison can be effected by straightforward numerical processes.

However, it is desirable to convert the resulting error probability

expressions into simpler functional forms which permit a direct

performance comparison for the case of primary interest, namely,
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that case in which the final output signal-to-noise ratio is such as to

provide acceptable bit error rates, but in which the bit error rates

which would be obtained at the outputs of the individual phase-locked

receivers would be so high as to render the data useless. This is

obviously the case of major interest because it represents the perform-

ance for which the total receiving system has been designed. Unless

the bit error rates at the outputs of the individual phase-locked

receivers are so high as to render the data useless, no need exists for

the composite receiving system which is the object of this section. The

resulting conditions on the single-receiver output signal-to-noise

ratio, z, are that z should be small relative to unity, but that nz

should be large relative to unity.

Under the conditions described previously, where nz is large

relative to unity, we may use the asymptotic form for 4. This

asymptotic form, valid for large positive x, is given by

-x2/2
l- _(x) - e (14)

From Equations 13 and 14

-(1/z) nz
Qz - e (15)

/2 nz

It remains to find a corresponding asymptotic form for Q1 or,

equivalently, PI" For this purpose observe that the binomial distri-

bution which led to Equation I0 has mean np and variance npq, where

q = l-p. The probability P1 may now be written as:

P1 = P[Sn >n/Z] = P

S - np /n
n > _ (p - i/2) (16)
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Now, according to the central limit theorem, or more precisely, the
special case applicable to the binomial distribution known as the

DeMoivre-Laplace theorem, the distribution of the variable S* given by
n

-o

S
n

S -np
n

_/npq

tends to a Gaussian distribution with mean zero and variance unity;
o.

moreover, the convergence is uniform in the sense that P {S"" < x}
rl

converges to _(x) uniformly in x. } From this fact it follows

that

where Y is a normally distributed random variable with mean zero and

variance unity. By the symmetry of the distribution, -Y has the same

distribution, so that the last equation shows that

From Equation 18,

(18)

(19)

The result expressed by Equation 19, while correct, requires some

explanation. As n tends toward infinity, both Q and the right hand side
1

of Equation 19 tend to zero. The uniformity in x of the convergence

asserted by the DeMoivre-Laplace theorem does not, in itself, imply

_The DeMoivre-Laplace limit theorem and its generalization, the cen-

tral limit theorem, may be found treated in some detail in almost any

serious text on probability theory. Reference 3 is particularly recom-
mended for the thoroughness and depth of its treatment.
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that the ratio of the two sides of Equation 19 tends to unity. This is a

mathematical subtlety which requires considerable caution. If the

convergence in question is, for the case at hand, such that the ratio
of the two sides of Equation 19 tends towards unity, the results that

follow will be valid. Since the precise nature of this asymptotic con-

vergence would require a considerably more detailed investigation of
rather delicate nature, this question can not be answered at the present

time. Rather, the ratio of the two sides in Equation 19 is assumed

asymptotic to unity for the present analysis. However, a more detailed

investigation of the nature of the convergence should be made before

the asymptotic results to be derived are employed as a basis for design.

In any event, a comparison can be made by numerical means merely by

employing the exact Equation i0.

The bit error probability is small for the cases of interest. In

the case of QI' only when the argument of • in Equation 19 is large

relative to unity is of interest. Under these circumstances, the right

hand side of Equation 19 can be approximated by use of Equation 14.

Before invoking this approximation it will be convenient to develop a

more convenient asymptotic expression for the argument of ¢ on the

right side of Equation 19. For this purpose, Equation 8 is used and

recall is made that the signal-to-noise ratio, z, is small relative to

unity for the case of interest. For small x, the approximation

i X

= (2o)

may be used in Equation 8, giving

P = "2+ ' q - 2

Thus, to first order in'z,

P - = _r
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Recall once again that, for the case of interest, nz is large relative to

unity. By combining Equations 14, 19, and 22, the probability of bit

error for a system which digitizes prior to correlation is,

nz

Tr

QI_- e

which can be rewritten in the more useful form

! z)2
e

QI _ (23)

Assuming the validity of the approximation made in employing

the central limit theorem, it is now a straighLforward 111___++,__v tom-

pare the performance of the two different signal-processing techniques.

For this purpose observe that the bit error rate given by Equation 23

has exactly the same functional form as that given by l_quation 15 except

that the quantity z in Equation 15 is replaced by the quantity (2/_r)z. It

follows at once from this observation that the system which digitizes

prior to correlation requires a signal-to-noise ratio _/Z times that

required by the system which digitizes following correlation in order

to obtain the same final bit error rate. That is, pre-digitizing the data

at the output of the phase-locked receiver associated with each indi-

vidual subaperture requires a signal-to-noise ratio at the receiver

output, and hence a received signal strength, which is larger by

I0 lOgl0 Tr/2 -- 2. 0 db. While every effort should be made in a deep

space communications system to obtain maximum communications

efficiency, the advantages of pre-digitizing the received data may be

sufficient to warrant consideration of this mode of operation in spite

of the 2-db perforn]ance penalty.
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It is of some interest to observe that the performance comparison
made above could have been made without the use of the asymptotic form

given by Equation 14. It would only have been necessary to introduce

the approximateion of Equation 2? into Equation 19 and compare the

result with the expression for Q2 obtainable from Equation 12 by means
of Equation 13. Explicit use of the asymptotic expression for I - _(x)

was chosen to provide equations which may be conveniently used for

numerical calculation of bit error probabilities.

USE OF A COMPUTER

The final point to be made in this subsection is the necessity for

computer control of the composite array. The beam steering and

signal processing operations required to control properly a large

number of electronically-scanned subapertures and to extract the

desired data from the received signal are sufficiently complex and

numerous that manual control of the system would simply not be

feasible. The computer could also perform both time delay compensa-

tion and the final zero-or-one decision-making process. Such a

computer could also decommutate and smooth the received data and

could decode the data if a coding scheme was employed. It goes almost

without saying that parity checking and error correction would then be

performed in the computer at the same time. These possibilities,

while not directly germane to determining the feasibility of the proposed

receiving system, are sufficiently attractive to warrant further study.
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APPENDIX F

LASER COMMUNICATION PHOTODETECTION EXPERIMENTS

1. INTRODUCTION

Present designs for laser communication systems are based upon

theoretical analyses which assume the detection process to be governed

by Poisson statistics. In addition, for deep space applications the designs

for laser communication systems are often predicated upon operation with

only a few signal photons per pulse or bit. However, no experimental

verifications have been made of laser signal detection capability of optical

receivers. This appendix outlines such an experimental program.

The experimental objectives of the program are to gather sufficient

photodetection data to:

a) statistically characterize the detection process

b) determine the output frequency spectrum

c) verify theoretically derived signal-to-noise ratio

d) verify theoretically derived probability of error

e) evaluate signal detection techniques
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2. OPTICAL DETECTION

There are three basic methods of optical detection: direct,

heterodyne, and homodyne detection. With direct detection the photodetector

output is the demodulated information signal. In a heterodyne detection

system the laser carrier is mixed on the photodetector surface with a local

oscillator laser. The signal from the photodetector is at the difference

frequency between the carrier and local oscillator, and is detected by

a conventional radio frequency receiver. Homodyne detection requires that

the local oscillator be _.... _ ....1_Huency =_,_ phas_ locked to the carrier. The

photodetector output is the demodulated information signal.

In optical communication systems, detection is impaired by:

background radiation in the receiver passband; detector shot noise caused

by background radiation, the local oscillator, the signal, and detector dark

current; and finally thermal noise caused by resistive elements in the

receiver. Table F-I lists the signal-to-noise ratios for the three basic

detection methods in terms of photoelectron counts due to the signal, local

oscillator, background, and dark current. Terms used in these expressior_s

are defined in the appendix. The relationships between the photoelectron

counts and communication system parameters are listed below.

Signal d Z l_qP L T T _ T
r t r c a

US, S:
_ R Z

hcO t

US, S

US, B -

R B
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Backsround

uB, S

2
rr

- 16

2
B. QB dr T18 T1 r r a

U
B,S

uB, p - Rp

Dark Current

Local Oscillator

UB,S

UB, B - RB

UD, S q

Po _]

UO, S - hv

UO, S

Uo, P - Rp

UO, S

UO, B - RB

The transmission capability of analog communication systems is

determined by the signal-to-noise ratios of Table F-1; while the capability of

time sampled systems is measured by the probability of detection error. To

derive the latter quantity it is necessary to know the statistical characteris-

tics of the detection process. If it is assumed that the emissive sources

radiate photons into the detector uniformly, then the photoelectron counts

of the detector output are given by a Poisson distribution. Table F-2 gives

probability of error expressions for various types of modulation and

detection methods.
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3. DESCRIPTION OF EXPERIMENTS

Figure F-I contains a block diagram of the experimental apparatus for

direct, heterodyne, and homodyne photodetection experiments. A variety of

data sources feed a signal coder which in turn drives an electro-optic

intensity modulator. With these data sources the following types of signal

formats may be considered.

No modulation

Sine wave intensity modulation

Pulse intensity modulation

Square wave intensity modulation

Digital intensity modulation

These modulation formats include all practical forms of intensity modulation

such as analog intensity modulation (IM), pulse position modulation PPM,

and pulse code intensity modulation PCM/IM. Results with these signal for-

mats also indirectly cover the detection of frequency, polarization, and

phase modulated carriers, since at present the only feasible means of

detecting such signal modulation is by indirect intensity photodetection. For.

example, PCM polarization modulation is detected by separating the polariza-

tion components by a prism, and directing them towards photodetectors.

In the experimental systems provisions are made to examine the out-

put of the photodetector directly, and to decode the received signal. For the

latter case, the transmitted and received signals are compared to determine

the probability of detection error.

Measurements of signal and noise power will be performed by

monitoring the receiver output for the controlled operating conditions listed

in the Table F-3.
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AMPLITUDE L_

OISCRIMINATOIq_ I

T
PULSEAMPLIFIER

COUNTER

[-- ,,"o,e#oJ,oor.w- "1 I POWER II o#_-_Ar_oN I METER

d
LTRANSMIT TERI LASER _ MODULATORELECTROOPTIC8 J - Z/- ]_ OIP:;CU_FILTER ,_1__ --, OETEC TORPHOTO _._ ELECTR' CAL _ ELEC TRICAL j iOUTPUTFILTER DETECTOR

r--_---]

I I LOC.,i I S,_NALMODULATOR " I OSC LLATOR SPECTRUM DECODERDR,VERI l i LASER,1' ANAL'Z"
4 I Fo_ #_r_oorN_" I 1

L o,_,,_,o_ j J OATA IS,GNA_OOER -I_OMPARA'OR

_"T 1t IPATTERN COUNTER

GENERATOR

SINE WAVE

GENERATOR

ISOUARE WAVE

GENERATOR 1

PULSE lGENERATOR

Figure F-1. Experimental optical detector system.
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!Signal IX X X X X X X X X X X X X X X X

Local Oscillator X X X X X X X X

Background X X X X X X X X X X X

Dark Current X X X X X X X X X X X

"Thermal X X X X X X X X X X X

Test No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Test Type Photodetector Direct Detection Heterodyne-Homodyne

Detection

Table F-3. Experimental conditions.

The X's indicate the presence of a signal, local oscillator, or certain

type of noise. For example, in Test No. 1, the output of a photodetector is

examined without any laser input, with the dark current and thermal noise

suppressed by cooling, and with the detector shielded from background radia-

tion. The results of this test will represent the best that can be achieved in

"noise free" operation with the experimental apparatus, and further provide

a reference for the other tests. In the subsequent tests the signal, local

oscillator and the noise effects will be considered singly and in all practical

combinations.

The most difficult part of the experiments will be to determine the

photoelectron counts due to the arrival of signal and background photons.

With a photomultiplier detector each photon which dislodges an electron from

the photoemissive surface will produce an output current pulse of magnitude

i - Gq
T

where

G

q =

T =

photodetector multiplication gain

electronic charge

detector resolving time
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For a typical high quality photomultiplier, G 10 6 and 1" l0 °8= = seconds so
-6

that current pulses of 16 x I0 amps will be produced. The photomultiplier

acts as an almost ideal current source with a shunt capacitance of approxi-

mately I0 pico-farads feeding a load resistor of about 75 ohms as shown

below.

PHOTOMULTIPLIER LOAO RESISTANCE

.=. -- .=_

Figure F-2. Photomultiplier output equivalent circuit.

The bandwidth of the output circuit is

B - I =" 2 x 10 8 H

o 2nRLC z

1
Thus, since Bo='_- Tthe detection system should pass the photomultiplier

current pulses with minimal pulse shape degradation. The output signal-to-

noise ratio (SNR) is from Table F-i.

S

N
US2, B

kTB ZB
o O

+U + B )
q2GZRLRB 2 + _BB (_S,B B,B UD,
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If the signal photon arrival rate is set so that the current pulses appear
1

every v seconds the SNR becomes for B - is
' o 2T

S

N

2

US ,B

kTT

. + (Us, + + )
2q2GZR B UB, B UD, B

At a temperature of 300°K the thermal noise term is negligible because of

the multiplication gain. Assuming the background and dark current photo-

electrons counts to be small the SNR is

But, it has been assumed that only a single photon will be released in the

detector resolving time T so that the SNR is unity.

A similar analysis for heterodyne detection yields a SNR of

S 2UO t B

N - (I + UO, B)

1

for a signal photon arrival rate of-#-. If the local oscillator photon rate is
I

also set at -#-so that a signal-local oscillator photon pair match is made, the

SNR becomes unity as in the case of direct detection.

For homodyne detection the SNR for single current pulses is

S 4UO, B

N (I + UO, B )

If the local oscillator rate matches the signal rate the SNR is two.
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Because of the low signal-to-noise ratio for single photon detection,

it will be necessary to modulate the signal photon rate and apply correlation

techniques between the single event detections. The difficulties inherent

with monitoring the signal and local oscillator rates, and eliminating dark

current, background radiation, and thermal noise may make it necessary to

infer information of single photon arrivals from sequential tests in which N

and N+I photons are detected. The signal-to-noise ratio in this experiment

approaches N.
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GLOSSARY OF TERMS

IM Intensity modulation

FM Frequency modulation

PM Phas e modulation

PL Polarization modulation

PPM Pulse position modulation

PCM Pulse code modulation

US, S Average number of signal photoelectrons per second

US, p Average number of signal photoelectrons per sample period

US, B Average number of signal photoelectrons per bit

_B S Average number of background photoelectrons per second

_B P Average number of background photoelectrons per sample period

_B B Average number of background photoelectrons per bit

Average number of dark current photoelectrons per secondUD, S

UD, p Average number of dark current photoelectrons per sample period

UD, B Average number of dark current photoelectrons per bit

_IO, S Average number of local oscillator photoelectrons per second

Average number of local oscillator photoelectrons per sample period
_tO, P

Average number of local oscillator photoelectrons per bit
UO, B

UN,p : _/B,P +_D,P

UN,B

i

Rp

R B

B.
t

B o

= _IB, B +UD, B

Photodetector current

Information rate (samples per second)

Information rate (bits per second)

Predetection filter bandwidth

Post detection filter bandwidth
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T

a

c
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V

r

d
r

R

P
L

P
O

S

N

q

h

k

R L

C

G

c

T

QB

i D

Detector resolving time

Number of levels of PPM

Bit error probability

Sample error probability

Transmitter transmittance

Receiver transmittance

Atmospheric transmittance

Scintillation transmittance

Photodetector quantum efficiency

Wavelength

Frequency

Transmitter beamwidth

Receiver field-of-view

Receiver aperture diameter

Range

Laser transmitter power

Local oscillator power incident on detector

Power signal-to-noise ratio

Electronic charge

Planck's constant

Boltzmann's constant

Effective thermal load resistance

Shunt capacitance

Photodetector multiplication gain

Velocity of light

Detector effective noise temperature

Background photon spectral radiance

Photomultiplier dark current
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